Tag Archives: bearings bearing bearing

China Professional High Quality High Precision Stainless Steel Needle Roller Bearings Nk85/25 Nk85/35 Nk90/25 Long Life Ball Bearing Gear Motor Bearing supplier

Product Description

Parameter:

Product Name needle roller bearing
Brand Name  KSA
Material Gcr15
Precision Grade P0,P6,P5
Certification ISO 9001
Packeage Box /Carton/Wooden Box/Plastic Tube or Per buyers requirement
MOQ Depending On Moedl
Serice OEM
Sample Available
Payment TT or L/C or Western Union
Port HangZhou ZheJiang HangZhou

 

Needle bearings are roller bearings with cylindrical rollers that are thin and long relative to their diameter. Such rollers are called needle rollers. Although it has a small cross-section, the bearing still has a high load-bearing capacity. Needle roller bearings are equipped with thin and long rollers, so the radial structure is compact. When the inner diameter size and load capacity are the same as other types of bearings, the outer diameter is the smallest. It is especially suitable for support structures with limited radial installation dimensions.
Needle bearing is a very important mechanical part, and its application range is very wide. Whether it is automobile, aerospace, machine tool, electric power, metallurgy and other industries, needle roller bearings are needed to support and rotate mechanical parts to ensure the safety and reliability of equipment. Therefore, the quality and performance of needle roller bearings play a vital role in mechanical equipment in all walks of life


Introduction:

Introduce our needle roller bearings to meet your needs!

Want to improve the performance of your industrial machinery? Your search is over! The design of our needle roller bearings offers numerous advantages, making them the perfect choice for your requirements.

1. Excellent accuracy: The precision of our bearings is carefully crafted to ensure minimum friction and optimum performance, thereby increasing the efficiency of your machine.

2. High load capacity: Designed to withstand heavy axial and radial loads, our bearings guarantee reliable operation, even in the most demanding applications.

3. Low maintenance: Say goodbye to frequent downtime and maintenance costs. Our needle roller bearings are durable and reduce the need for replacement.

4. Multi-functional applications: Whether you operate in automotive, manufacturing or any other industry, these bearings are versatile enough to meet a wide range of applications

Bearing classification

Our Advantages

Low noise 
Adopting advanced silent manufacturing technology, the product has the characteristics of low noise, low torque, low temperature rise, and is a high-performance bearing with energy saving and environmental protection. 

High precision
Through the selection of new materials and special structural design, the product has the characteristics of good sealing performance, small running resistance and high rotation accuracy. 

long-life 
Seiko hot rolling and expanding technology and special heat treatment process, improve the bearing high temperature resistance, wear resistance, impact resistance, high load characteristics, improve the reliability and service life of the bearing

Company Profile

 

About us

Specialized production

ZheJiang Kangshi Precision Bearing Manufacturing Co., Ltd., located in Yandian Town Industrial Park, HangZhou City, ZheJiang Province, mainly produces zero deep groove ball bearings, 2 types of cylindrical roller bearings, 3 types of aligning roller bearings, 6 types of angular contact ball bearings, 7 types of tapered roller bearings, 8 types of thrust ball bearings, thrust bearings, 9 types of thrust aligning roller bearings, outer spherical bearings, auto parts, Motorcycle parts and other rolling bearings. Our factory has strong professional technology, good production equipment and perfect testing means, can fully meet the various types, specifications, high precision and special use requirements of bearing products customized processing, the production process of the product according to the strict national standards of enterprise internal control standards for the implementation of full inspection and multi-project comprehensive inspection of factory products, Can ensure the quality of each set of factory bearing products to meet national standards. Kangshi bearing has always implemented national standards, market prices, and implemented the “three guarantees” principle for customers: To ensure high-quality quality, preferential prices, superior after-sales service! Welcome customers at home and abroad to consult and negotiate business, the company will continue to win the trust of more customers with good product quality and reputation.

Scope of application

FAQ

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail for more information.
Q: How about the package?
A: Industrial packing in general condition (Plastic drums/boxes/industrial packaging + cartons + pallets). Accept design package when OEM.
Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.
Q:What are the advantages of your company’s services compared to other companies?
A: Factory direct supply, price advantage, 24 hours online timely reply, Provide customers with customs clearance 
and quality of various documents, 100% after-sales service
Q:OEM POLICY
A:We can printing your brand (logo,artwork)on the bearings or laser engraving your brand on the bearings.
    We can custom your packaging according to your design All copyright own by clients and we  promised  don’t 
    disclose any info.
Q:How to contact us quickly?
A:Please send us an inquiry or message and leave your other contact information, such as phone number,
     account or account, we will contact you as soon as possible and provide the detailed information
    you need.

             Please feel free to contact us, if you have any other question

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Load Direction: Radial Bearing
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Professional High Quality High Precision Stainless Steel Needle Roller Bearings Nk85/25 Nk85/35 Nk90/25 Long Life Ball Bearing Gear Motor Bearing   supplierChina Professional High Quality High Precision Stainless Steel Needle Roller Bearings Nk85/25 Nk85/35 Nk90/25 Long Life Ball Bearing Gear Motor Bearing   supplier
editor by CX 2024-05-15

China OEM Factory Outlet High Precision Ceramic Ball Bearings wheel bearing

Product Description

Product Description

Our company’s ultra-precision high-speed ceramic ball bearings use Si3N4 ceramic balls as rolling elements and GCr15, 9Cr18 (Mo), Cr4Mo4V, and other alloy steel materials as ring materials to produce P2 and P4 level bearings. This can solve the problem of bearings being unable to be used normally under certain circumstances.

Advantages: high and low-temperature resistance, ultra-high speed, ultra-long life, acid and alkali corrosion resistance, dry friction without lubrication, impact resistance, insulation, etc.

High-precision silicon nitride (Si3N4) ceramic balls
Rolling element material: silicon nitride
Density:3.21-3.24
Modulus of elasticity: 308
HardnessHRC: 90-93
Anti-paste strength: 800
Compressive strength: 3400
Thermal expansion coefficient: 3.2
Thermal conductivity: 35
Maximum operating temperature: 1000ºC
Self-lubricating: Good
Poisson’s ratio:0.26
Excellent training ability: Good
Dimensional stability: Good

Cage
Cage material: phenolic bakelite
Cage performance: The silent effect is between metal and nylon materials, with a certain elasticity, lightweight, and certain anti-sliding and self-lubricating properties. Suitable for high-speed bearings, high acceleration and subtraction, etc.

 

Our Advantages

1. The density of silicon nitride ceramics is only 42% of bearing steel. It is light in weight and is of great significance in the aerospace field.
2. Silicon nitride ceramic balls have a small density, small centrifugal force, and high-speed rotation.
The bearing life during rotation is greatly improved.
3. Silicon nitride ceramic has high wear resistance and greatly improves bearing life.
4. Silicon nitride ceramic bearings can still work normally for a long time even if lubrication is lost, which greatly improves the safety and reliability of aerospace equipment.

 

Product Parameters

 

Application

1. Papermaking machinery, deceleration device, railway vehicle axle, rolling mill, roller gearbox
2. Crusher, vibrating screen, printing machinery, woodworking machinery
3. Various industrial reducer

 

Company Profile

Our existing products include high-precision silicon nitride (Si3N4) ceramic balls and ultra-precision ceramic bearings, with more than 60 varieties.

The ultra-precision ceramic bearings produced by the company are high-end bearings. They mainly produce angular contact ball bearings and deep groove ball bearings with an inner diameter of φ10-φ60mm. They can also produce bearings with special requirements, sliding bearings, and various customized non-standard bearings.

The accuracy levels of our products are divided into 3 levels: P4, P4A, and P2. The quality, performance, reliability, and service life of the bearings are equivalent to the physical bearings of the world’s top brands. The DmN value of grease-lubricated bearings can reach 2 million. When lubricated with oil, The DmN value can reach 2.6 million, and the limit revolution speed can reach 80,000 revolutions per minute. It is mainly used to replace imports and break the monopoly of imported bearings in the domestic high-end market.

 

Certifications

FAQ

1. Free Samples: contact us by email or trade manager, and we will send the free samples per your request.  
2. World-Class Bearing: We provide our customers with all types of indigenous bearing with world-class quality.
3. OEM or Non-Stand Bearings: Any requirement for Non-standard bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 
4. Genuine products With Excellent Quality: The company has always proved the 100% quality products it provides with genuine intent.
5. After-Sales Service and Technical Assistance: The company provides after-sales service and technical assistance per the customer’s requirements and needs.
6. Quick Delivery: The company provides just-in-time delivery with its streamlined supply chain.
7. Cost Saving: We provide long-life, shock-resistant, high-reliability bearings with excellent quality and better performance. It is resulting in increased cost savings.
8. Attending customer queries promptly: We believe that if customers are satisfied, it proves our worth. Customers are always given quick support.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Ceramic
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Can you Provide Examples of Industries where Ball Bearings are Crucial Components?

Ball bearings are essential components in a wide range of industries where smooth motion, load support, and precision are vital. Here are some examples of industries where ball bearings play a crucial role:

  • Automotive Industry:

Ball bearings are used in various automotive applications, including wheel hubs, transmissions, engines, steering systems, and suspension components. They provide reliable rotation and support in both passenger vehicles and commercial vehicles.

  • Aerospace Industry:

In the aerospace sector, ball bearings are found in aircraft engines, landing gear systems, control surfaces, and avionics equipment. Their ability to handle high speeds and precision is vital for aviation safety.

  • Industrial Machinery:

Ball bearings are integral to a wide range of industrial machinery, including pumps, compressors, conveyors, machine tools, printing presses, and textile machinery. They facilitate smooth operation and load distribution in these diverse applications.

  • Medical Equipment:

In medical devices and equipment, ball bearings are used in surgical instruments, imaging equipment, dental tools, and laboratory machinery. Their precision and smooth movement are crucial for accurate diagnostics and treatments.

  • Robotics and Automation:

Ball bearings are key components in robotic arms, automation systems, and manufacturing machinery. They enable precise movement, high-speed operation, and reliable performance in automated processes.

  • Renewable Energy:

Wind turbines and solar tracking systems utilize ball bearings to enable efficient rotation and tracking of the wind blades and solar panels. Ball bearings withstand the dynamic loads and environmental conditions in renewable energy applications.

  • Marine and Shipbuilding:

Ball bearings are used in marine applications such as ship propulsion systems, steering mechanisms, and marine pumps. They withstand the corrosive environment and provide reliable performance in maritime operations.

  • Heavy Equipment and Construction:

In construction machinery like excavators, bulldozers, and cranes, ball bearings support the movement of heavy loads and enable efficient operation in demanding environments.

  • Electronics and Consumer Appliances:

Consumer electronics like electric motors, computer hard drives, and household appliances rely on ball bearings for smooth motion and reliable operation.

  • Oil and Gas Industry:

In oil and gas exploration and extraction equipment, ball bearings are used in drilling rigs, pumps, and processing machinery. They handle the high loads and harsh conditions of this industry.

These examples demonstrate how ball bearings are indispensable components in various industries, contributing to the efficiency, reliability, and functionality of diverse mechanical systems and equipment.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China OEM Factory Outlet High Precision Ceramic Ball Bearings   wheel bearingChina OEM Factory Outlet High Precision Ceramic Ball Bearings   wheel bearing
editor by CX 2024-05-15

China best 40+ OEM Supplier 51317 51417 M 53217 53317 51118 Single Direction Thrust Ball Bearings for Spare Parts bearing distributors

Product Description

PRODUCT PICTURES:
 
OUR SERVICES
We can provide manufacturing capabilities and services of regular bearings for you, or customized non-standard bearings as you required.

 BEARING:
  — Dimensions
  — Material
  — Tolerance standard

APPEARANCE:
  — Logo (Laser Marking)
  — Package Design
40+ YEARS EXPERIENCE 
CONTINUOUS AND STABLE DELIVERY OF PRODUCTS.

With over 40 years experience of the bearing manufacturing, we know how to make good bearings with less cost consistently and efficiently.

We use advanced CNC turning, grinding, and superfinishing machines to ensure high, stable, and accurate machining.  All of your goods, from the most economical category, to the highest rated category, will always be manufactured precisely to the standards you require.

OWN HEAT TREATMENT 
CONTROALLABLE COST AND QUALITY.

Heat treatment is 1 of the crucial processes to ensure high performance of bearing materials. Compared with other manufacturers, we can produce higher quality bearings at smaller cost, with a more flexible and controllable production schedule, and in a shorter time

We have 6 heat treatment production lines.

Bearings are heated uniformly, with small deformation and little/no oxidized decarburization, which can make them have high hardness, high fatigue resistance, good wear resistance, dimensional stability, and excellent mechanical strength.

OUTSTXIHU (WEST LAKE) DIS.  QUALITY
LOW NOISE, LOW FRICTION AND LONG LIFE.

All our products are characterized by low noise, low friction and long life.  This is due to our attention to the roundness, waviness and surface roughness of bearing raceway.

Our products fully meets the requirements of national and international standards according to the testing result of roughness, roundness, hardness, vibration noise, vibration velocity.
PACKING
PACKAGING THAT HELPS SELL.

1, Inner package
   Corrosion and Dust Proof PE plastic film  / bag packing + Tube packing, or Wrapping  tape for larger bearings.
2, Corrugated Individual Box
   Our attractive sales-helpful “3-JOYS” package, or as the design of your package.
3, Outer package
  Corrugated carton + Wooden pallet 
MODERN WELL-ORGANIZED WAREHOUSE

  · Constant temperature (20°C) and humidity (RH 52%) warehouse
  · Hundreds of models on hand, short delivery time.
HONOR & SYSTEM CERTIFICATES
EXHIBITION
SAMPLES POLICY 

 

FREE SAMPLES AND SHIPPING

 We are happy to send you free samples of our bearings for field   testing. All transportation costs will be paid by us.

 Please note: Depending on the model and value of samples,   this policy may not apply!

 Please contact our sales staff for details.

TRANSPORTATION
FASTEST DELIVERY TO CUSTOMERS

CUSTOMERS FEEDBACK

PAYMENT TERMS 
To facilitate your payment, we offer a variety of options! 
FAQ

1, About the lead time.
 
This depends on several factors, like Is the production schedule tight? Is there a corresponding model in stock, and is there enough of this model in stock? How many pcs of that model would be ordered?
Simply speaking, based on a 20′ GP container load:

If the model your Preferred is Sufficient stock Lead Time
Regular models YES Within 7 days
Regular models NO Within 30 days
Non-regular model NO About 50 days

For accurate estimate, please contact with our sale stuff. Thanks.

2, Minimum order quantity. 
  

Even just ONE piece of bearing is ok for us.

  
3, If you don’t know which model is the right choice…
  

We would like to give you some advise if you like, according to the real situation and demand of your local market. Our purpose is to help you to get proper and right models for your customers, so that you would make a better sales and income finally.

4, Factory Inspection

We surely would welcome you or your representatives to come to our plants or working offices to take a good look and chat with our hardworking CZPT employees. Ask our sales stuff and she/he will arrange that for you.     /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Direction: Single Direction
Rolling Element: Ball Bearing
Cage Design: Machined Brass Cage; Machined Steel Cage
Tolerance: P5; P6
Clearance: C2; C3
Stock: Large Stock
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China best 40+ OEM Supplier 51317 51417 M 53217 53317 51118 Single Direction Thrust Ball Bearings for Spare Parts   bearing distributorsChina best 40+ OEM Supplier 51317 51417 M 53217 53317 51118 Single Direction Thrust Ball Bearings for Spare Parts   bearing distributors
editor by CX 2024-05-14

China Hot selling Japan CZPT CZPT Bearings 6201 6202 6203 6204 6205 6208 6203RS Bearing CZPT 6204 6205 6206 6207 Ball Bearings 6203 6204 6201 CZPT deep groove ball bearing

Product Description

Japan CZPT CZPT Bearings rs Bearing CZPT Ball Bearings NTN

Product Description

Deep Groove Ball Bearings:

Deep groove ball bearings are suitable for high or even very high speed operation, its very durable and do not require regular maintenance. This kind of bearing has small friction coefficient, high limit speed, various sizes and forms. It is widely used in precision instruments, low noise motors, automobiles, motorcycles and general machinery industries. It is mainly subjected to radial load and can also bear a certain amount of axial load.It can be used in gearboxes, instruments, motors, household appliances, internal combustion engines, roller skates, etc.

You can contact us to contact for specific information about the bearing model you want.

Detailed Photos

Size Information

 

Model

d(mm)

D(mm)

B(mm)

weight(kg)

6000

10

26

8

0.018

6001

12

28

8

0.571

6002

15

32

9

0.03

6003

17

35

10

0.04

6004

20

42

12

0.068

6005

25

47

12

0.079

6006

30

55

13

0.113

6007

35

62

14

0.149

6008

40

68

15

0.185

6009

45

75

16

0.231

6571

50

80

16

0.25

6201

12

32

10

0.036

6202

15

35

11

0.045

6203

17

40

12

0.065

6204

20

47

14

0.103

6205

25

52

15

0.127

6206

30

62

16

0.203

6207

35

72

17

0.287

6208

40

80

18

0.367

6209

45

85

19

0.416

6210

50

90

20

0.462

Our Main Products

1

Deep groove ball bearings

2

Insert bearings

3

Angular contact ball bearings

4

Self-aligning ball bearings

5

Thrust ball bearings

6

Cylindrical roller bearings

7

Needle roller bearings

8

Tapered roller bearings

9

Spherical roller bearings

10

Toroidal roller bearings

11

Cylindrical roller thrust bearings

12

Needle roller thrust bearings

13

Tapered roller thrust bearings

14

Spherical roller thrust bearings

15

Ball and roller screws

16

Linear guides and tables

17

Pollow block bearing

18

Wheel Bearings

19

Cam followers

20

Track rollers

21

Super-precision bearings

22

Plain bearings/Rod end bearings

23

Bearing Units

24

Bearing Housings

Packaging & Shipping

 

package

1)Neutral package + carton package 2)Carton package + pallet 3)Wood package + pallet

Delivery Time

1-3 days after order

Shipping

by air to door address / by sea to sea port

Company Profile

Certifications

FAQ

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

Are there any Industry Standards or Certifications that Ball Bearings should Meet?

Yes, there are several industry standards and certifications that ball bearings should meet to ensure their quality, performance, and reliability. These standards help manufacturers, engineers, and customers assess the suitability of bearings for specific applications. Some of the key standards and certifications for ball bearings include:

  • ISO Standards:

The International Organization for Standardization (ISO) has developed a series of standards related to ball bearings. ISO 15 defines dimensions, boundary dimensions, and tolerances for radial bearings. ISO 281 specifies dynamic load ratings and calculation methods for bearings’ life calculations.

  • ABEC (Annular Bearing Engineering Committee) Ratings:

ABEC ratings are commonly used in North America to indicate the precision and performance of ball bearings. Ratings range from ABEC 1 (lowest precision) to ABEC 9 (highest precision). However, it’s important to note that ABEC ratings focus primarily on dimensional tolerances and do not encompass all aspects of bearing quality.

  • DIN Standards:

The German Institute for Standardization (Deutsches Institut für Normung, DIN) has published various standards related to ball bearings. DIN 625 covers dimensions for deep groove ball bearings, while DIN 616 provides guidelines for precision angular contact ball bearings.

  • JIS (Japanese Industrial Standards):

JIS standards are used in Japan and internationally to define the characteristics and dimensions of various products, including ball bearings. JIS B 1512 outlines the classification and dimensions of rolling bearings.

  • ASTM (American Society for Testing and Materials) Standards:

ASTM has standards that cover various aspects of bearing testing, performance, and materials. ASTM F2215, for instance, specifies the requirements for ball bearings used in surgical implants.

  • CE Marking:

CE marking indicates that a product complies with European Union health, safety, and environmental requirements. It may be required for bearings used in machinery intended to be sold within the EU market.

  • Industry-Specific Standards:

Various industries, such as aerospace, automotive, medical, and nuclear, have specific standards or certifications that bearings must meet to ensure safety, reliability, and compliance with industry-specific requirements.

  • Quality Management Systems:

Manufacturers that adhere to quality management systems, such as ISO 9001, demonstrate their commitment to consistent product quality and customer satisfaction. Certification to these systems indicates that the manufacturing process follows established protocols and best practices.

When selecting ball bearings, it’s important to consider the relevant standards and certifications that align with the application’s requirements. This ensures that the bearings meet recognized quality and performance criteria, ultimately contributing to reliable and efficient operation.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Hot selling Japan CZPT CZPT Bearings 6201 6202 6203 6204 6205 6208 6203RS Bearing CZPT 6204 6205 6206 6207 Ball Bearings 6203 6204 6201 CZPT   deep groove ball bearingChina Hot selling Japan CZPT CZPT Bearings 6201 6202 6203 6204 6205 6208 6203RS Bearing CZPT 6204 6205 6206 6207 Ball Bearings 6203 6204 6201 CZPT   deep groove ball bearing
editor by CX 2024-05-09

China Professional Motorcycle Ball Bearing Deep Groove Ball Bearings 6304 Zz with high quality

Product Description

Product Description

Deep groove ball bearings

Deep groove ball bearings are the most representative of rolling bearings,simple structure, easy to use and versatile .Such bearings are non-separabal bearings,the inner and outer rings are rolled into a ditch arc type,can bear radial load and axial load:low coefficient of friction,high limiting speed ,suitable for high-spped,low noise ,low vibration occasions.
 

Model              

6304 ZZ

Inner size          

20mm      

Outer diameter     

52mm

Height         

15mm

Package               

Single box packing

Seal

Open Z ZZ RS 2RS RZ 2RZ

Gross weight        

0.142Kg

Features               

Long life, high quality, low noise, strict controlling of the quality, competitive price, OEM service offered

Application           

Gearbox, auto,reduction box,engine machinery, mining machinery,bicycles,etc.

Price terms          

FOB,CFR,CIF,EXW

Delivery time 

7-15days acccording the quantity

Market

Europe,South America,North America,Middle East,Southeast Asia

Details

We have complete process for the production and quality assurance to make sure our products can meet your requirement.

 

 

Detailed Images

Product application

Deep groove balll bearings are widely used in automobiles,machine tools,motors,instrumentation,construction machinery,railway vehicles,agricultural machinery and various equipment industry machinery.

Packing & Delivery

1.industrial packing+industrial cartons+pallets

2.single brand box+brand cartons+pallets

3.follow customer’s requests

A.Plastic Tubes or Single Boxes ( Usually 10pcs in 1 plastic tube for steel bearings);

B.Cartons ( No more than 30kg for 1 carton );

C. Pallet ( Usually more than 400kg totally will use pallet )

 

D. Delivery time :7-35 days ( by sea or by air )
 

 Generally,We will choose the most suitable packing method for products. If you have any special requirements for packing, please contact us in advance.

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Bore Size: 20 – 200 mm
Precision Rating: P0, P6, P5, P4
Seals Type: Open, Zz RS, Rz
Certificate: ISO9001:2000
Aligning: Non-Aligning Bearing
Separated: Separated
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

How do Ceramic Ball Bearings Compare to Traditional Steel Ball Bearings in Terms of Performance?

Ceramic ball bearings and traditional steel ball bearings have distinct characteristics that can impact their performance in various applications. Here’s a comparison of how these two types of bearings differ in terms of performance:

  • Material Composition:

Ceramic Ball Bearings:

Ceramic ball bearings use ceramic rolling elements, typically made from materials like silicon nitride (Si3N4) or zirconium dioxide (ZrO2). These ceramics are known for their high hardness, low density, and resistance to corrosion and wear.

Traditional Steel Ball Bearings:

Traditional steel ball bearings use steel rolling elements. The type of steel used can vary, but common materials include chrome steel (52100) and stainless steel (440C). Steel bearings are known for their durability and strength.

  • Friction and Heat:

Ceramic Ball Bearings:

Ceramic bearings have lower friction coefficients compared to steel bearings. This results in reduced heat generation during operation, contributing to higher efficiency and potential energy savings.

Traditional Steel Ball Bearings:

Steel bearings can generate more heat due to higher friction coefficients. This can lead to increased energy consumption in applications where efficiency is crucial.

  • Weight:

Ceramic Ball Bearings:

Ceramic bearings are lighter than steel bearings due to the lower density of ceramics. This weight reduction can be advantageous in applications where minimizing weight is important.

Traditional Steel Ball Bearings:

Steel bearings are heavier than ceramic bearings due to the higher density of steel. This weight may not be as critical in all applications but could impact overall equipment weight and portability.

  • Corrosion Resistance:

Ceramic Ball Bearings:

Ceramic bearings have excellent corrosion resistance, making them suitable for applications in corrosive environments, such as marine or chemical industries.

Traditional Steel Ball Bearings:

Steel bearings are susceptible to corrosion, especially in harsh environments. Stainless steel variants offer improved corrosion resistance but may still corrode over time.

  • Speed and Precision:

Ceramic Ball Bearings:

Ceramic bearings can operate at higher speeds due to their lower friction and ability to withstand higher temperatures. They are also known for their high precision and low levels of thermal expansion.

Traditional Steel Ball Bearings:

Steel bearings can operate at high speeds as well, but their heat generation may limit performance in certain applications. Precision steel bearings are also available but may have slightly different characteristics compared to ceramics.

  • Cost:

Ceramic Ball Bearings:

Ceramic bearings are generally more expensive to manufacture than steel bearings due to the cost of ceramic materials and the challenges in producing precision ceramic components.

Traditional Steel Ball Bearings:

Steel bearings are often more cost-effective to manufacture, making them a more economical choice for many applications.

In conclusion, ceramic ball bearings and traditional steel ball bearings offer different performance characteristics. Ceramic bearings excel in terms of low friction, heat generation, corrosion resistance, and weight reduction. Steel bearings are durable, cost-effective, and widely used in various applications. The choice between the two depends on the specific requirements of the application, such as speed, precision, corrosion resistance, and budget considerations.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Professional Motorcycle Ball Bearing Deep Groove Ball Bearings 6304 Zz   with high qualityChina Professional Motorcycle Ball Bearing Deep Groove Ball Bearings 6304 Zz   with high quality
editor by CX 2024-05-09

China manufacturer Low Friction Roller Skating Ball Bearings 6801of Thin Wall Bearings 6801 bearing block

Product Description

Product Description

 

Our Advantage:

1.Small order accepted,if we have stock.

2.OEM offered: technical drawings or samples welcomed.

3.Popular in the world: High quality, competitive price, On time delivery.

4.Professional supplier.

5.Any questions to be sent will get response within 24 hours.

6.Sample Lead-times: generally 7 workdays by Express DHL/FedEX/UPS/TNT/EMS

Production Lead-times: 35 workdays after getting your deposit.Goods will be shipped by sea/by air.

7.Before shipment ,products will be strictly inspection on our factory QC Process System.Just in case,there is abnormal.Please contact us at first time, Customer Complaint handling procedure will be bootat once.Implementation of the scheme will be come out within 48 hours.We will negotiate with customer to find a reasonable way to resolve and compensate.
Product specification

Name Cylindrical Roller Bearing
Ring material Chrome Steel GCr15
Brand Fuqin or customer’s requirement
Precision P0,P6,P5,P4
Clearance: C2 ,C3, C4
Quality standard ISO9001:2008
Samples Available
Service OEM
Payment terms A:100% T/T in advance
B: 30% T/T in advance .70% against copy of B/L
C.West Union
D.L/C at sight
Application Heavy machine tool, high-powered marine gear case, oil rig, vertical machine.
Series 1. Single row tapered roller bearings
2. Double row tepered roller bearings
3. Four row tapered roller bearings
4. Paired single row tpered roller bearings
Features 1.High quality and good service
2.Less friction and low noise
3.Competitve price
4.Durable
5.Professional manufacturer of ball bearing and roller bearing

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Medium and Large(120-190mm)
Material: Stainless Steel
Spherical: Aligning Bearings
Load Direction: Radial Bearing
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

What are the Different Components that Make up a Typical Ball Bearing?

A typical ball bearing consists of several essential components that work together to reduce friction and support loads. Here are the main components that make up a ball bearing:

  • Outer Ring:

The outer ring is the stationary part of the bearing that provides support and houses the other components. It contains raceways (grooves) that guide the balls’ movement.

  • Inner Ring:

The inner ring is the rotating part of the bearing that attaches to the shaft. It also contains raceways that correspond to those on the outer ring, allowing the balls to roll smoothly.

  • Balls:

The spherical balls are the rolling elements that reduce friction between the inner and outer rings. Their smooth rolling motion enables efficient movement and load distribution.

  • Cage or Retainer:

The cage, also known as the retainer, maintains a consistent spacing between the balls. It prevents the balls from touching each other, reducing friction and preventing jamming.

  • Seals and Shields:

Many ball bearings include seals or shields to protect the internal components from contaminants and retain lubrication. Seals provide better protection against contaminants, while shields offer less resistance to rotation.

  • Lubricant:

Lubrication is essential to reduce friction, wear, and heat generation. Bearings are typically filled with lubricants that ensure smooth movement between the balls and raceways.

  • Flanges and Snap Rings:

In some designs, flanges or snap rings are added to help position and secure the bearing in its housing or on the shaft. Flanges prevent axial movement, while snap rings secure the bearing radially.

  • Raceways:

Raceways are the grooved tracks on the inner and outer rings where the balls roll. The shape and design of the raceways influence the bearing’s load-carrying capacity and performance.

  • Anti-Friction Shield:

In certain high-speed applications, a thin anti-friction shield can be placed between the inner and outer rings to minimize friction and heat generation.

These components work together to enable the smooth rolling motion, load support, and reduced friction that characterize ball bearings. The proper design and assembly of these components ensure the bearing’s optimal performance and longevity in various applications.

China manufacturer Low Friction Roller Skating Ball Bearings 6801of Thin Wall Bearings 6801   bearing blockChina manufacturer Low Friction Roller Skating Ball Bearings 6801of Thin Wall Bearings 6801   bearing block
editor by CX 2024-05-08

China best Low Noise Chrome Steel Ball Bearings Z3 Level 6002 RS Deep Groove Ball Bearing bearing and race

Product Description

Low Noise Chrome Steel Ball Bearings Z3 Level 6pcs spark plugs per day.
Q3: How about your delivery time ?
A3: Delivery time is 20days after you confirmed order.
Q4: What is the benefit for the exclusive agency?
A4: 1.Market Protection
2.Special price or discount in some months
3.Priority delivery
4.Free promotion materials:T-shirt
Q7:Can you produce bearing with our sample?
A7:Yes ,we can.and we will make new CZPT according to your samples.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Item Name: Premium Ball Bearing
Item Model: Zz RS Series Ball Bearing
Bearing Material: Ball Bearing Steel / Stainless Steel /Carbon Steel
Shielded: Metal or Plastic
Application: Bearing for Motorcycle Automobiles Machine Motor
Metal Engraving: Customized
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China best Low Noise Chrome Steel Ball Bearings Z3 Level 6002 RS Deep Groove Ball Bearing   bearing and raceChina best Low Noise Chrome Steel Ball Bearings Z3 Level 6002 RS Deep Groove Ball Bearing   bearing and race
editor by CX 2024-05-07

China Custom Angular Contact Ball Bearings High Quality for Farm Machinery Parts 7007AC 7007acm 71807c bearing example

Product Description

Product Parameters

Bearing type Boundary  Dimensions( mm ) Speed  Rating(ipm)  Load Rating(kn) Weight(kg)
d D B Grease lubrication Oil lubrication Dynamic Cr Static Cor
7000AC 10 26 8 22000 30000 4.55 1.97 0.019
7001AC 12 28 8 20000 26000 5.1 2.38 0.571
7002AC 15 32 9 19000 24000 5.58 2.85 0.03
7003AC 17 35 10 17000 21000 6 3.25 0.04
7004AC 20 42 12 16000 19000 9.38 5.02 0.069
7005AC 25 47 12 15000 18000 10.1 5.85 0.08
7006AC 30 55 13 13000 15000 13.2 8.3 0.116
7007AC 35 62 14 11000 13000 16 10.3 0.155
7008AC 40 68 15 9000 11000 17 11.8 0.185
7009AC 45 75 16 8000 10000 21 14.8 0.23
7571AC 50 80 16 7000 9000 22.05 16.21 0.25
7011AC 55 90 18 7000 8500 30.2 21.8 0.362
7012AC 60 95 18 6300 7500 31.65 24.22 0.385
7013AC 65 100 18 6000 7000 32 24.72 0.41
7014AC 70 110 20 5000 6700 38.5 30.5 0.575
7015AC 75 115 20 5300 6300 40.2 33.2 0.603
7016AC 80 125 22 5000 6000 47.5 39.8 0.821
7017AC 85 130 22 4500 5600 50.8 42.8 0.848
7018AC 90 140 24 4300 5300 58 49.8 1.1
7019AC 95 145 24 4000 5000 57.8 50 1.15
7571AC 100 150 24 3800 4800 64.5 56.2 1.18
7571AC 110 170 28 3400 4300 81.8 72.8 1.89
7571AC 120 180 28 3000 3800 87.5 79.2 1.99
7026AC 130 200 33 2800 3600 105 96.8 3.08
7571AC 140 210 33 2400 3200 116 108 3.17
7030AC 150 225 35 2200 3000 132 125 3.9
7032AC 160 240 38 2000 2800 145 138 4.83
7034AC 170 260 42 1900 2600 170 170 6.5
7036AC 180 280 46 1300 2400 188 198 8.51

Model Model Model Model Model Model Model Model Model Model Model Model
7000AC 7212AC 7408AC 7048ACM 7308ACM 71801C 71912C QJ212M 7201BTN 7224BM 7305BM  7408BM
7001AC 7213AC  7409AC   7309ACM 71802C  71913C QJ213M 7202BTN 7226BM  7306BM  7409BM
7002AC 7214AC  7410AC 7200ACM 7310ACM 71803C 71914C QJ214M 7203BTN 7228BM  7307BM  7410BM
7003AC 7215AC 7411AC 7201ACM 7311ACM 71804C 71915C  QJ215M 7204BTN 7230BM 7308BM  7412M
7004AC  7216AC 7412AC 7202ACM 7312ACM 71805C  71916C QJ216M 7205BTN 7232BM 7309BM  7413BM
7005AC  7217AC  7413AC 7203ACM 7313ACM 71806C 71917C QJ217M 7206BTN 7234BM 7310BM  7414BM
7006AC 7218AC 7414AC 7204ACM 7314ACM 71807C 71918C QJ218M 7207BTN 7236BM 7311BM  7416BM
7007AC 7219AC 7415AC 7205ACM 7315ACM 71808C 71919C QJ219M 7208BTN 7238BM 7312BM  7432BM
7008AC 7220AC 7416AC  7206ACM 7316ACM 71809C 71920C QJ220M 7209BTN 7240BM 7313BM   
7009AC   7221AC    7207ACM 7317ACM 71810C 71921C QJ222M 7210BTN 7244BM 7314BM   
7571AC   7222AC  7000ACM 7208ACM 7318ACM 71811C 71922C QJ224M 7211BTN 7248BM 7315BM   
7011AC 7224AC 7001ACM 7209ACm 7319AC 71812C 71924C QJ226M 7212BTN 7252 BM 7316BM   
7012AC 7226AC 7002ACM 7210ACM 7320ACM 71813C 71926C  QJ228M 7213BTN 7256BM 7317BM   
7013AC 7228AC 7003ACM 7211ACM 7321ACM 71814C 71928C QJ230M 7214BTN 7260BM 7319BM   
7014AC 7230AC  7004ACM 7212ACM 7322ACM 71815C 71930C QJ232M 7215BTN 7264BM 7320BM   
7015AC   7005ACM 7213ACM 7324ACM 71816C 71932C QJ234M 7216BTN   7322BM   
7016AC 7301AC 7006ACM 7214ACM 7326ACM 71817C 71934C QJ236M 7217BTN   7324BM   
7017AC 7302AC 7007ACM 7215ACM 7328ACM 71818C 71936C QJ240M 7218BTN   7326BM   
7018AC 7303AC  7008ACM 7216ACM 7330ACM 71819C 71938C QJ244M   7301BTN 7328BM  
7019AC 7304AC  7009ACM 7217ACM 7332ACM 71820C 71940C    7219BTN 7302BTN 7330BM  
7571AC 7305AC 7571ACM 7218ACM 7334ACM 71821C     7220BTN   7332BM  
7571AC 7306AC 7011ACM 7219ACM 7336ACM 71822C QJ1018M QJ305M 7222BTN 7304BTN 7334BM  
7571AC 7307AC 7012ACM 7220ACM 7340ACM 71824C QJ1571M QJ306M 7224BTN 7305BTN 7336BM  
7571AC 7308AC 7013ACM 7221ACM   71826C QJ1571M QJ307M 7226BTN  7306BTN 7338BM  
7026AC 7309AC 7014ACM 7222ACM   71828C QJ1571M QJ308M   7307BTN 7340BM  
7571AC 7310AC 7015ACM 7224ACM 7405ACM  71830C QJ1026M QJ309M   7308BTN 7344BM  
7030AC 7311AC 7016ACM 7226ACM 7406ACM 71832C QJ1571M QJ310M   7309BTN 7318BM  
7032AC 7312AC 7017ACM 7228ACM 7407ACM  71834C QJ1030M QJ311M 7206BM 7310BTN 7356BM  
7034AC 7313AC 7018ACM 7230ACM 7408ACM 71836C QJ1032M QJ312M 7207BM 7311BTN    
7036AC 7314AC 7019ACM 7232ACM 7409ACM 71838C QJ1034M QJ313M 7208BM 7312BTN    
  7315AC 7571ACM 7234ACM 7410ACM 71840C QJ1036M QJ314M 7209BM 7313BTN    
7200AC 7316AC 7571ACM 7236ACM 7411ACM   QJ1038M QJ315M 7210BM 7314BTN    
7201AC 7317AC 7571ACM 7238ACM 7412ACM 71901C QJ1040M QJ316M 7211BM 7315BTN    
7202AC 7318AC 7571ACM 7240ACM 7413ACM 71902C QJ1044M QJ317M 7212BM 7316BTN    
7203AC  7319AC 7026ACM 7244ACM 7414ACM 71903C QJ1048M QJ318M 7213BM 7317BTN    
7204AC 7320AC 7571ACM   7415A0M 71904C   QJ319M 7214BM 7318BTN    
7205AC  7321AC 7030ACM 7301ACM 7416ACM 71905C QJ205M QJ320M 7215BM 7319BTN    
7206AC 7322AC 7032ACM 7302ACM 7417ACM 71906C QJ206M QJ322M 7216BM 7320BTN    
7207AC 7324AC 7034ACM 7303ACM 7418ACM 71907C QJ207M QJ324M 7217BM 7322BTN    
7208AC   7036ACM 7304A0M 7420ACM 71908C QJ208M QJ326M 7218BM      
7209AC 7405AC 7038ACM 7305ACM 7432ACM 71909C QJ209M QJ328M 7219BM      
7210AC 7406AC 7040ACM 7306ACM   71910C QJ210M QJ330M 7220BM      
7211AC 7407AC 7044ACM 7307ACM    71911C QJ211M QJ336M 7222BM      

Our business:Produce and customize various bearing brands. (Packaging and logo can be customized. All copyright belongs to the customer. We promise not to disclose any information.)
We can supply a wide range of Auto bearings. The bearings are widely applicable to themost of cars in the world.

Detailed Photos

 

  

Packaging & Shipping

 

Company Profile

HangZhou Haver Seiko Bearing Co.,Ltd. is a high-end Automotive bearing manufacturer from ZheJiang China. Its headquarters is located in HangZhou,ZheJiang Province.HangZhou Haver Seiko Bearing Co.,Ltd. Exports 80% of its auto parts,covering more than 40% countries in Europe,the Middle East,Southeast Asia, and South America.

As a high-end brand in the automotive bearing manufacturing industry, HangZhou Haver Seiko Bearing Co.,Ltd. has more than 20 years of experience in automotive design and manufacturing,and can meet the most stringent requirements of customers.

Exhibitions&Partners

FAQ

Q:Are you trading company or manufacturer?
–We are the company dealing in trading business and manufacturing business.

Q:What’s the MOQ?
–MOQ is 2pcs for standardized products; 300pcs for customized products. There is no MOQ for sample orders.

Q:How long is the lead time?
–The lead time for sample orders is 1-3 days, for bulk orders is generally in 3-15 days.The delivery time is generally in 2 days after payment. It’s according to the order amount.

Q:Do you offer free samples?
–If you place an order, we can return part of sample fee even all of fee to you. It also depends on the quantity of order and the type of sample. And you just need to pay freight.

Q: Could you customized for me?
–Sure,we can supply OEM service as per your drawing or samples.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 25°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

What Precautions should be taken to Prevent Contamination of Ball Bearings in Industrial Settings?

Preventing contamination of ball bearings is essential to ensure their proper function, longevity, and overall performance in industrial settings. Contaminants such as dust, dirt, debris, and particles can significantly impact bearing operation. Here are important precautions to take to prevent contamination of ball bearings:

  • Effective Sealing:

Choose ball bearings with appropriate seals or shields to prevent the ingress of contaminants. Seals provide a physical barrier against dust, moisture, and particles, ensuring the bearing’s interior remains clean.

  • Clean Environment:

Maintain a clean working environment around the machinery and equipment. Regularly clean the surrounding areas to prevent the accumulation of dirt and debris that could enter the bearings.

  • Proper Handling:

Handle bearings with clean hands and use gloves if necessary. Avoid touching the bearing surfaces with bare hands, as natural skin oils can transfer contaminants onto the bearing.

  • Clean Tools and Equipment:

Use clean tools and equipment during installation and maintenance to prevent introducing contaminants. Ensure that tools are properly cleaned before coming into contact with the bearing components.

  • Contamination-Controlled Workstations:

Establish contamination-controlled workstations for bearing handling, installation, and maintenance. These areas should have proper ventilation, filtered air, and minimal exposure to external contaminants.

  • Proper Lubrication:

Use the correct lubricant in appropriate quantities. Lubricants help create a barrier against contaminants and reduce friction. Regularly inspect and replenish lubrication to maintain its effectiveness.

  • Regular Inspections:

Implement a routine inspection schedule to monitor the condition of the bearings. Look for signs of contamination, wear, and damage. Address any issues promptly to prevent further damage.

  • Training and Education:

Train personnel on proper handling, installation, and maintenance practices to minimize the risk of contamination. Educated employees are more likely to take precautions and prevent accidental contamination.

  • Environmental Controls:

In sensitive environments, such as clean rooms or medical facilities, implement strict environmental controls to minimize the presence of contaminants that could affect bearing performance.

  • Regular Cleaning and Maintenance:

Perform regular cleaning and maintenance of machinery and equipment to prevent the buildup of contaminants. Keep bearings protected during maintenance to prevent debris from entering during the process.

  • Selection of Suitable Bearings:

Choose bearings that are specifically designed for the application’s environmental conditions. Some bearings have advanced sealing options or specialized coatings that enhance contamination resistance.

By implementing these precautions, industries can significantly reduce the risk of contamination in ball bearings, ensuring smooth operation, extended bearing life, and enhanced equipment reliability.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China Custom Angular Contact Ball Bearings High Quality for Farm Machinery Parts 7007AC 7007acm 71807c   bearing exampleChina Custom Angular Contact Ball Bearings High Quality for Farm Machinery Parts 7007AC 7007acm 71807c   bearing example
editor by CX 2024-05-07

China OEM Active-Power Industries 6204zz Deep Groove Ball Bearing 6311-2RS 62056 Deep Groove Ball Bearings China Distributors bearing air

Product Description

ACTIVE-POWER INDUSTRIES 6204Zz Deep Groove Ball Bearing 6311-2RS 62056 Deep Groove Ball Bearings China Distributors

Product Description

Deep groove ball bearings (GB/T 276-2003) The original list of radial ball bearings is the most widely used rolling bearing. It is characterized by small frictional resistance and high speed and can be used on parts that bear radial loads or joint loads that act simultaneously in radial and axial directions and can also be used on parts that bear axial loads, such as small-power motors, Automotive and tractor gearboxes, machine tool gearboxes, general machines, tools, etc.

Deep groove ball bearings are the most common type of rolling bearings:

The basic deep groove ball bearing consists of an outer ring, an inner ring, a set of steel balls, and a set of cages. There are 2 types of deep groove ball bearings: single-row and double-row. The structure of deep groove balls is also divided into 2 types: sealed and open. The open type means that the bearing does not have a sealed structure. seal. The material of the dust-proof sealing cover is stamped steel plate, which simply prevents dust from entering the bearing raceway. The oil-proof type is a contact oil seal, which can effectively prevent the grease in the bearing from overflowing.

The type code of single row deep groove ball bearing is 6, and the code name of double row deep groove ball bearing is 4. Its structure is simple, and easy to use, and it is the most commonly produced and widely used type of bearing.

 

According to the size of deep groove ball bearings, they can be divided into:

(1) Miniature bearings – bearings with a nominal outer diameter of 26mm or less;
(2) Small bearings – bearings with a nominal outer diameter ranging from 28 to 55mm;
(3) Small and medium-sized bearings – bearings with a nominal outer diameter ranging from 60-115mm;
(4) Medium and large bearings – bearings with a nominal outer diameter ranging from 120-190mm
(5) Large bearings – bearings with a nominal outer diameter ranging from 200-430mm;
(6) Extra-large bearings – bearings with a nominal outer diameter of 440mm or more.
 

Product Parameters

Product Name Deep Groove Ball Bearing
Material Gcr15
Size 5mm-500mm
Precision Rating P0 P6 P5 P4 P2
Clearance C2 C0 C3 C4 C5
Seals Type Z ZZ 2RS ZNR 2RS1 2RSH 2RSL 2RZ 2Z 2ZNR, Z ZZ 2RS ZNR 2RS1 2RSH 2RSL 2RZ 2Z 2ZNR

      CHROME STEEL*                    Dimensions in mm unless otherwise specified
      Bore      O.D.   Width Open Bearing Shielded Bearing Sealed Bearing       Basic Load Ratings
                    KN
HNS HNS HNS dynamic static
Reference Reference Reference C Co
20 42 12 6004 6004ZZ 6004-2RS 7.22 4.46
47 14 6204 6204ZZ 6204-2RS 12.7 6.5
52 15 6304 6304ZZ 6304-2RS 15.9 7.8
25 47 12 6005 6005ZZ 6005-2RS 10.1 5.85
52 15 6205 6205ZZ 6205-2RS 14 7.8
62 17 6305 6305ZZ 6305-2RS 22.5 11.6
80 21 6405 6405ZZ 6405-2RS 36.1 19.4
30 55 13 6006 6006ZZ 6006-2RS 10.2 6.91
62 16 6206 6206ZZ 6206-2RS 19.5 11.2
72 19 6306 6306ZZ 6306-2RS 28.1 16
90 23 6406 6406ZZ 6406-2RS 43.4 23.9
35 62 14 6007 6007ZZ 6007-2RS 16 10.3
72 17 6207 6207ZZ 6207-2RS 25.5 15.3
80 21 6307 6307ZZ 6307-2RS 33.2 19
100 25 6407 6407ZZ 6407-2RS 55 31
40 68 15 6008 6008ZZ 6008-2RS 13 11.5
80 18 6208 6208ZZ 6208-2RS 29.8 18
90 23 6308 6308ZZ 6308-2RS 39.8 23.3
110 27 6408 6408ZZ 6408-2RS 65.5 37.5
45 75 16 6009 6009ZZ 6009-2RS 21 14.9
85 19 6209 6209ZZ 6209-2RS 32.2 21
100 25 6309 6309ZZ 6309-2RS 51.1 30.5
120 29 6409 6409ZZ 6409-2RS 77.5 45.5
50 80 16 6571 6571ZZ 6571-2RS 22 16.2
90 20 6210 6210ZZ 6210-2RS 34 22.5
110 27 6310 6310ZZ 6310-2RS 59.9 36.9
130 31 6410 6410ZZ 6410-2RS 92.2 55.2
55 90 18 6011 6011ZZ 6011-2RS 30.4 22
100 21 6211 6211ZZ 6211-2RS 43.3 28.1
120 29 6311 6311ZZ 6311-2RS 71.5 44.6
140 33 6411 6411ZZ 6411-2RS 100 62.5
60 95 18 6012 6012ZZ 6012-2RS 30.7 22.7
110 22 6212 6212ZZ 6212-2RS 46.1 31.5
130 31 6312 6312ZZ 6312-2RS 79.4 50.4
150 35 6412 6412ZZ 6412-2RS 109 70
65 100 18 6013 6013ZZ 6013-2RS 32.1 24.9
120 23 6213 6213ZZ 6213-2RS 54.2 39.3
140 33 6313 6313ZZ 6313-2RS 89.5 59.7
160 37 6413 6413ZZ 6413-2RS 118 78.5
70 110 20 6014 6014ZZ 6014-2RS 38.6 30.6
125 24 6214 6214ZZ 6214-2RS 58.9 43.6
150 35 6314 6314ZZ 6314-2RS 101 66
180 42 6414 6414ZZ 6414-2RS 140 99.5
75 115 20 6015 6015ZZ 6015-2RS 31 33.1
130 25 6215 6215ZZ 6215-2RS 64.3 47.5
160 37 6315 6315ZZ 6315-2RS 111 74.2
190 45 6415 6415ZZ 6415-2RS 154 115
80 125 22 6016 6016ZZ 6016-2RS 47.5 39.8
140 26 6216 6216ZZ 6216-2RS 68.1 53.3
170 39 6316 6316ZZ 6316-2RS 120 83.9
200 48 6416 6416ZZ 6416-2RS 163 125
85 130 22 6017 6017ZZ 6017-2RS 50.8 42.8
150 28 6217 6217ZZ 6217-2RS 83.2 64
180 41 6317 6317ZZ 6317-2RS 132 96.5
210 52 6417 6417ZZ 6417-2RS 175 138
90 140 24 6018 6018ZZ 6018-2RS 58 49.8
160 30 6218 6218ZZ 6218-2RS 92.7 71.3
190 43 6318 6318ZZ 6318-2RS 145 108
225 54 6418 6418ZZ 6418-2RS 192 158
95 145 24 6019 6019ZZ 6019-2RS 57.8 50
170 32 6219 6219ZZ 6219-2RS 105 79.1
200 45 6319 6319ZZ 6319-2RS 157 122
100 150 24 6571 6571ZZ 6571-2RS 64.5 56.2
180 34 6220 6220ZZ 6220-2RS 118 88.4
215 47 6320 6320ZZ 6320-2RS 173 140
105 160 26 6571 6571ZZ 6571-2RS 71.8 63.2
190 36 6221 6221ZZ 6221-2RS 126 98.8
225 49 6321 6321ZZ 6321-2RS 173 145
110 170 28 6571 6571ZZ 6571-2RS 81.9 72.9
200 38 6222 6222ZZ 6222-2RS 136 112
240 50 6322 6322ZZ 6322-2RS 193 171
120 180 28 6571 6571ZZ 6571-2RS 88.7 79.7
215 40 6224 6224ZZ 6224-2RS 139 112
260 55 6324 6324ZZ 6324-2RS 217 196
130 200 33 6026 6026ZZ 6026-2RS 105 96.8
230 40 6226 6226ZZ 6226-2RS 148 125
280 58 6326 6326ZZ 6326-2RS 218 205
140 210 33 6571 6571ZZ 6571-2RS 116 108
250 42 6228 6228ZZ 6228-2RS 179 167
300 62 6328 6328ZZ 6328-2RS 275 272
150 225 35 6030 6030ZZ 6030-2RS 132 125
270 45 6230 6230ZZ 6230-2RS 190 183
160 240 38 6032 6032ZZ 6032-2RS 145 138
290 48 6232 6232ZZ 6232-2RS 215 218

Company Profile

HangZhou Active-Power Industrial. is located in HangZhou, ZheJiang , China. The factory has been committed to the production research and development of bearings for more than 20 years. We support OEM and ODM bearing customization.

The main products are: Deep Groove Ball Bearing Taper Roller Bearing Tapered Roller Bearing Auto Wheel Hub Bearing Cylindrical Roller Bearing Spherical Roller Bearing Motor Bearing Needle Roller Bearing Angular Contact Ball Bearing.

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at the first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Auto Bearing
Keywords: Deep Groove Ball Bearing
Precision Rating: P0 P6 P5 P4 P2
Width Size: 9mm-300mm
Diameter Size: 30mm-1600mm
Inner Diameter Size: 10mm-1320mm
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

What are the Common Signs of Wear or Damage in Ball Bearings that Indicate the Need for Replacement?

Ball bearings are subjected to wear and stress during operation, and over time, they may exhibit signs of damage or deterioration that warrant replacement. Recognizing these signs is crucial to prevent catastrophic failure and ensure safe and reliable operation. Here are the common signs of wear or damage in ball bearings:

  • Unusual Noise:

If you hear unusual grinding, clicking, or rumbling noises coming from the bearing during operation, it may indicate worn-out or damaged components. Unusual noise suggests that the bearing is no longer operating smoothly.

  • Vibration:

Excessive vibration in the machinery can be a sign of bearing wear. Vibrations can result from uneven wear, misalignment, or damaged components within the bearing.

  • Increased Temperature:

Higher operating temperatures than usual may indicate increased friction due to inadequate lubrication, wear, or other issues. Monitoring the bearing’s temperature can help identify potential problems.

  • Irregular Movement:

If you notice irregular movement, jerking, or sticking during rotation, it could be a sign that the bearing is no longer operating smoothly. This may be due to damaged rolling elements or raceways.

  • Reduced Performance:

If the machinery’s performance has decreased, it may be due to a compromised bearing. Reduced efficiency, increased energy consumption, or a decline in overall performance could be indicators of bearing wear.

  • Visible Wear or Damage:

Inspect the bearing for visible signs of wear, such as pitting, scoring, or discoloration on the rolling elements or raceways. Severe wear or damage is a clear indication that the bearing needs replacement.

  • Leakage or Contamination:

If there is evidence of lubricant leakage, contamination, or the presence of foreign particles around the bearing, it suggests that the seal or shield may be compromised, leading to potential damage.

  • Looseness or Excessive Play:

If you can feel excessive play or looseness when manually moving the bearing, it could indicate worn-out components or misalignment.

  • Reduced Lifespan:

If the bearing’s expected lifespan is significantly shorter than usual, it may be due to inadequate lubrication, excessive loads, or improper installation, leading to accelerated wear.

  • Frequent Failures:

If the bearing is consistently failing despite regular maintenance and proper use, it could indicate a chronic issue that requires addressing, such as inadequate lubrication or misalignment.

It’s important to conduct regular inspections, monitor performance, and address any signs of wear or damage promptly. Replacing worn or damaged ball bearings in a timely manner can prevent further damage to machinery, reduce downtime, and ensure safe and efficient operation.

ball bearing

How do Temperature and Environmental Conditions Affect the Performance of Ball Bearings?

Temperature and environmental conditions have a significant impact on the performance and longevity of ball bearings. The operating environment can influence factors such as lubrication effectiveness, material properties, and overall bearing behavior. Here’s how temperature and environmental conditions affect ball bearing performance:

  • Lubrication:

Temperature variations can affect the viscosity and flow characteristics of lubricants. Extreme temperatures can cause lubricants to become too thin or too thick, leading to inadequate lubrication and increased friction. In high-temperature environments, lubricants can degrade, reducing their effectiveness.

  • Material Properties:

Temperature changes can alter the material properties of the bearing components. High temperatures can lead to thermal expansion, affecting bearing clearances and potentially causing interference between components. Extreme cold temperatures can make materials more brittle and prone to fracture.

  • Clearance Changes:

Temperature fluctuations can cause changes in the internal clearance of ball bearings. For instance, at high temperatures, materials expand, leading to increased clearance. This can affect bearing performance, load distribution, and overall stability.

  • Corrosion and Contamination:

Harsh environmental conditions, such as exposure to moisture, chemicals, or abrasive particles, can lead to corrosion and contamination of bearing components. Corrosion weakens the material, while contamination accelerates wear and reduces bearing life.

  • Thermal Stress:

Rapid temperature changes can result in thermal stress within the bearing components. Differential expansion and contraction between the inner and outer rings can lead to stress and distortion, affecting precision and bearing integrity.

  • Noise and Vibration:

Temperature-related changes in material properties and internal clearances can influence noise and vibration levels. Extreme temperatures can lead to increased noise generation and vibration, affecting the overall operation of machinery.

  • Lubricant Degradation:

Environmental factors like humidity, dust, and contaminants can lead to premature lubricant degradation. Oxidation, moisture absorption, and the presence of foreign particles can compromise the lubricant’s performance and contribute to increased friction and wear.

  • Seal Effectiveness:

Seals and shields that protect bearings from contaminants can be affected by temperature fluctuations. Extreme temperatures can lead to seal hardening, cracking, or deformation, compromising their effectiveness in preventing contamination.

  • Choosing Appropriate Bearings:

When selecting ball bearings for specific applications, engineers must consider the expected temperature and environmental conditions. High-temperature bearings, bearings with specialized coatings, and those with enhanced sealing mechanisms may be necessary to ensure reliable performance.

Overall, understanding the impact of temperature and environmental conditions on ball bearing performance is crucial for proper bearing selection, maintenance, and ensuring optimal operation in diverse industries and applications.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China OEM Active-Power Industries 6204zz Deep Groove Ball Bearing 6311-2RS 62056 Deep Groove Ball Bearings China Distributors   bearing airChina OEM Active-Power Industries 6204zz Deep Groove Ball Bearing 6311-2RS 62056 Deep Groove Ball Bearings China Distributors   bearing air
editor by CX 2024-05-06

China wholesaler China Bearing Manufacturers Specializing in The Production of Linear Motion Bearings Linear Bearings Lmh12uu Lmh13uu Lmh16uu Extended Ball Linear Bearing wholesaler

Product Description

Linear bearing is a linear motion system used for linear stroke and cylindrical shaft.
Because the bearing ball and the bearing jacket are point contact, the steel ball rolls with small friction resistance, so the linear bearing has small friction and relatively stable characteristics, does not change with the bearing speed, and can obtain a stable linear movement with high sensitivity and high precision.

Product Name Linear bearing
Brand Name  KSA
Material Gcr15
Precision Grade P0,P6,P5
Certification ISO 9001
Packeage Box /Carton/Wooden Box/Plastic Tube or Per buyers requirement
MOQ Depending On Moedl
Serice OEM
Sample Available
Payment TT or L/C or Western Union
Port HangZhou ZheJiang HangZhou

Product Description

Company Profile

                   ZheJiang Kangshi Precision Bearing Manufacturing Co., Ltd., located in Yandian Town Industrial Park, HangZhou City, ZheJiang Province, mainly produces zero deep groove ball bearings, 2 types of cylindrical roller bearings, 3 types of aligning roller bearings, 6 types of angular contact ball bearings, 7 types of tapered roller bearings, 8 types of thrust ball bearings, thrust bearings, 9 types of thrust aligning roller bearings, outer spherical bearings, auto parts, Motorcycle parts and other rolling bearings. Our factory has strong professional technology, good production equipment and perfect testing means, can fully meet the various types, specifications, high precision and special use requirements of bearing products customized processing, the production process of the product according to the strict national standards of enterprise internal control standards for the implementation of full inspection and multi-project comprehensive inspection of factory products, Can ensure the quality of each set of factory bearing products to meet national standards. Kangshi bearing has always implemented national standards, market prices, and implemented the “three guarantees” principle for customers: To ensure high-quality quality, preferential prices, superior after-sales service! Welcome customers at home and abroad to consult and negotiate business, the company will continue to win the trust of more customers with good product quality and reputation.

Our certificate

Scope of application

Used in electronic equipment, printing machinery, tobacco machinery, medical machinery, textile machinery, food processing machinery, packaging machinery, robots, power tools, CNC machine tools, automobiles and digital three-dimensional coordinate measuring equipment and other precision equipment or special machinery industry.

                 durable                                Heat treatment technology                         Keep clean

With high-end technology manufacturing,         After advanced quenching heat treatment,          Even tiny dust that is invisible to the 
each product has high hardness and high        the bearing has enough hardness to ensure        naked eye can have adverse effects, 
quality of its own performance                          the load carrying capacity                                     so keep your surroundings clean
 

FAQ

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail for more information.
Q: How about the package?
A: Industrial packing in general condition (Plastic drums/boxes/industrial packaging + cartons + pallets). Accept design package when OEM.
Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.
Q:What are the advantages of your company’s services compared to other companies?
A: Factory direct supply, price advantage, 24 hours online timely reply, Provide customers with customs clearance 
and quality of various documents, 100% after-sales service
Q:OEM POLICY
A:We can printing your brand (logo,artwork)on the bearings or laser engraving your brand on the bearings.
    We can custom your packaging according to your design All copyright own by clients and we  promised  don’t 
    disclose any info.
Q:How to contact us quickly?
A:Please send us an inquiry or message and leave your other contact information, such as phone number,
     account or account, we will contact you as soon as possible and provide the detailed information
    you need.

             Please feel free to contact us, if you have any other question

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Oval
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Factors to Consider When Selecting a Linear Bearing

Choosing the right linear bearing for a specific application involves considering several critical factors to ensure optimal performance and longevity:

  • Load Requirements:

Determine the magnitude and direction of the loads the linear bearing will experience. Consider both static and dynamic loads to select a bearing with an appropriate load capacity.

  • Precision and Accuracy:

For applications requiring precise positioning, choose linear bearings with high precision and low backlash. Factors like repeatability and positional accuracy are crucial.

  • Speed and Acceleration:

Consider the speed and acceleration at which the linear bearing will operate. Higher speeds may require bearings with lower friction and better heat dissipation.

  • Environmental Conditions:

Assess the environmental factors such as temperature, humidity, and exposure to contaminants. Choose linear bearings with suitable materials and seals to withstand the conditions.

  • Space Constraints:

Take into account the available space for mounting the linear bearing. Some applications may have limited space, necessitating compact and lightweight bearing options.

  • Maintenance Requirements:

Consider the maintenance needs of the bearing. Bearings with self-lubricating properties or easy access for lubrication can reduce maintenance frequency.

  • Mounting and Configuration:

Choose a linear bearing that can be easily mounted and integrated into your system’s design. Consider factors like mounting orientation and available mounting surfaces.

  • Life Expectancy:

Estimate the expected lifespan of the linear bearing based on the application’s requirements. Select a bearing with a suitable design life to prevent premature failures.

  • Cost and Budget:

Balance the desired performance with the available budget. Opt for linear bearings that provide the necessary features without exceeding cost limitations.

  • Accessories and Add-ons:

Consider any additional accessories or add-ons, such as seals, lubrication systems, or end caps, that can enhance the bearing’s performance and protection.

  • Manufacturer and Supplier:

Choose reputable manufacturers and suppliers that offer reliable products and good customer support. Quality assurance and technical assistance are essential.

Overall, a comprehensive assessment of these factors will help you select the most suitable linear bearing for your specific application, ensuring optimal performance, longevity, and cost-effectiveness.

China wholesaler China Bearing Manufacturers Specializing in The Production of Linear Motion Bearings Linear Bearings Lmh12uu Lmh13uu Lmh16uu Extended Ball Linear Bearing   wholesalerChina wholesaler China Bearing Manufacturers Specializing in The Production of Linear Motion Bearings Linear Bearings Lmh12uu Lmh13uu Lmh16uu Extended Ball Linear Bearing   wholesaler
editor by CX 2024-05-06