Tag Archives: sales bearing

China Best Sales Angular Contact Ball Bearing 7203acd with Best Sales

Product Description

angular contact ball bearing 7203ACD


 

71900CD

71930CD

7228ACD

7000ACD/DB

7000CD

7030CD

7030ACD

7200CD/DB

7200CD

7230CD

7232ACD

7200ACD/DB

71901CD

71936CD

7236ACD

7001CD/DB

7001CD

7036CD

7244ACD

7001ACD/DB

7201CD

7236CD

7204B

7201CD/DB

71902CD

71944CD

7205B

7201ACD/DB

7002CD

7044CD

7305B

7002CD/DB

7202CD

7244CD

7206B

7002ACD/DB

71903CD

7000ACD

7306B

7202CD/DB

7003CD

7200ACD

7207B

7202ACD/DB

7203CD

7001ACD

7307B

7003CD/DB

71904CD

7201ACD

7208B

7003ACD/DB

7004CD

7002ACD

7308B

7203CD/DB

7204CD

7202ACD

7210B

7203ACD/DB

71905CD

7003ACD

7310B

7004CD/DB

7005CD

7203ACD

7212B

7004ACD/DB

7205CD

7004ACD

7312B

7204CD/DB

71910CD

7204ACD

7214B

7204ACD/DB

7571CD

7005ACD

7314B

7204B/DB

7210CD

7205ACD

7216B

7005CD/DB

71916CD

7571ACD

7316B

7005ACD/DB

7016CD

7210ACD

7218B

7205CD/DB

7216CD

7016ACD

7318B

7205ACD/DB

71920CD

7216ACD

7220B

7205B/DB

7571CD

7571ACD

7320B

7305B/DB

7220CD

7220ACD

7222B

7571CD/DB

71924CD

7571ACD

7322B

7571ACD/DB

7571CD

7224ACD

7328B

7210CD/DB

7224CD

7571ACD

7000CD/DB

7210ACD/DB

Quick Details
Structure: Angular Contact
Type: Ball
Bore Size: 6 mm
Outside Diameter: 17 mm
Model Number: 706C
Precision Rating: P0, P6, P5
Seals Type: OPEN
Number of Row: Single Row
Bearing name: Precision miniature angular contact ball bearing 706C
Bearing Material: GCR-15/ GCR-11
Height: 6 mm
Spec: 6*17*6 mm bearing
Cage: Brass/ steel / nylon
Index: DmN 1.3~1.8x 106 /min
Weight: 0.055 KG
Quality standard: Ball bearing 706C passed ISO9001: 2008
OEM service: Precision miniature bearing 706C can offer

Specifications
1. In high speed application
2. Combination arbitrarily
3. Lower noise and higher speed
4. Higher rated load

Packaging & Delivery
Packaging Detail: Angular contact ball bearing 1. Neutral Package: Plastic Bag + Carton + Pallet; 2. Commercial Package: Plastic Bag + Box + Carton + Pallet; 3. As the clients’ requirement.
Delivery Detail: 5-30days

Applications
The raceways of angular contact ball bearing in the inner and outer rings can have relative displacement on the horizontal axis. Therefore, this design can make it withstand combined loads, namely, supporting radial and axial loads simultaneously. The axial load capacity of angular contact ball bearing improves with the increasing contact angle.
 

BearingNo. Bore(mm) O.D.(mm) Width(mm) Weight (lbs)
7308 40 90 23 1.38
7309 45 100 25 1.85
7310 50 110 27 2.40
7311 55 120 29 3.06
7312 60 130 31 3.84
7313 65 140 33 4.65
7314 70 150 35 5.64
7315 75 160 37 6.77
7316 80 170 39 8.05
7317 85 180 41 9.57
7318 90 190 43 11.2
7319 95 200 45 13.0
7320 100 215 47 15.8
7321 105 225 49 18.1
7322 110 240 50 21.2
7324 120 260 55 32.4
7326 130 280 58 38.8
7328 140 300 62 47.4
7330 150 320 65 55.3
7332 160 340 68 65.7
7334 170 360 72 77.8
7336 180 380 75 90.2
7338 190 400 78 104
7340 200 420 80 117
7000C 10 26 8 0.042

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

ball bearing

Are there Specific Maintenance Practices to Ensure the Longevity of Ball Bearings?

Maintaining ball bearings is essential to ensure their longevity, reliable performance, and prevent premature failure. Proper maintenance practices can extend the lifespan of ball bearings and the equipment they are used in. Here are specific maintenance practices to consider:

  • Regular Lubrication:

Implement a regular lubrication schedule using the appropriate lubricant for the application. Lubrication reduces friction, prevents wear, and helps dissipate heat. Follow manufacturer guidelines for lubricant type, quantity, and frequency.

  • Clean Environment:

Keep the operating environment clean and free from contaminants. Dust, dirt, and debris can infiltrate bearings and cause damage. Use seals or shields to protect bearings from contaminants, especially in harsh environments.

  • Proper Installation:

Ensure correct installation of bearings using proper tools and techniques. Improper installation can lead to misalignment, uneven load distribution, and premature wear. Follow manufacturer recommendations for installation procedures.

  • Regular Inspections:

Perform routine visual inspections to check for signs of wear, damage, or contamination. Regular inspections can help identify issues early and prevent further damage. Pay attention to noise, vibration, and temperature changes.

  • Temperature Monitoring:

Monitor bearing temperatures during operation using infrared thermometers or sensors. Abnormal temperature increases can indicate inadequate lubrication, misalignment, or other problems.

  • Correct Handling:

Handle bearings with care to prevent damage during storage, transportation, and installation. Avoid dropping or subjecting them to impacts that can affect their internal components.

  • Bearing Removal and Replacement:

Follow proper procedures when removing and replacing bearings. Use appropriate tools and techniques to avoid damage to the bearing or the surrounding components.

  • Alignment Maintenance:

Maintain proper shaft and housing alignment to prevent excessive loads and wear on the bearing. Misalignment can lead to increased stress and premature failure.

  • Training and Education:

Provide training to operators and maintenance personnel on proper bearing maintenance and handling practices. Educated personnel are more likely to identify issues and perform maintenance correctly.

  • Documented Records:

Keep records of maintenance activities, inspections, lubrication schedules, and any issues encountered. This documentation helps track the bearing’s performance over time and informs future maintenance decisions.

By implementing these maintenance practices, you can ensure the longevity of ball bearings, minimize downtime, reduce operational costs, and maintain the reliability of the equipment they are a part of.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What are the Primary Benefits of Using Ball Bearings in Machinery and Equipment?

Ball bearings offer several primary benefits when used in machinery and equipment. Their design and functionality provide advantages that contribute to the efficient and reliable operation of various applications. Here are the key benefits:

  • Reduced Friction:

One of the primary benefits of ball bearings is their ability to minimize friction between moving parts. The rolling motion of the balls reduces the contact area and sliding friction, leading to smoother operation and less energy loss due to frictional heating.

  • Efficient Load Support:

Ball bearings are engineered to support both radial and axial loads, making them versatile for applications with multidirectional forces. This load-bearing capability allows machinery to handle different types of loads while maintaining performance and stability.

  • Smooth Rotation:

Ball bearings enable smooth and precise rotational movement. The rolling motion of the balls provides consistent motion with minimal resistance, ensuring that machinery operates smoothly and without jerks.

  • High-Speed Capability:

Due to their low friction and efficient rolling action, ball bearings are suitable for high-speed applications. They allow machinery and equipment to achieve and maintain high rotational speeds without excessive wear or heat buildup.

  • Reduced Wear and Maintenance:

The reduced friction in ball bearings leads to lower wear on components. This results in longer service intervals and reduced maintenance requirements, saving both time and maintenance costs.

  • Energy Efficiency:

By minimizing friction and reducing energy losses, ball bearings contribute to the overall energy efficiency of machinery. This is particularly important in applications where energy consumption is a concern.

  • Versatility:

Ball bearings come in various types, sizes, and configurations, allowing them to be used in a wide range of machinery and equipment. They can be customized to suit specific application requirements.

  • Reliability and Longevity:

Ball bearings are designed to withstand heavy loads and harsh operating conditions. Their durability and resistance to wear ensure reliable performance and an extended operational life.

  • Quiet Operation:

Ball bearings contribute to quiet machinery operation due to the smooth rolling motion of the balls. This is particularly important in applications where noise reduction is a consideration.

In summary, the primary benefits of using ball bearings in machinery and equipment include reduced friction, efficient load support, smooth rotation, high-speed capability, reduced wear and maintenance, energy efficiency, versatility, reliability, and quiet operation. These benefits collectively enhance the performance and longevity of machinery across various industries.

China Best Sales Angular Contact Ball Bearing 7203acd   with Best SalesChina Best Sales Angular Contact Ball Bearing 7203acd   with Best Sales
editor by CX 2024-05-16

China Best Sales Lm35uu Linear Motion Ball Bearing Auto CNC Machine Parts Slide Bearing supplier

Product Description

Linear motion bearings with Chrome plated hardness linear shafts

Company Profile

HangZhou Wangong Precision Machinery Co., Ltd.

About US: Professional  producing Ball screw, Linear guide, linear shaft, Linear roller CZPT and linear motion bearings
HangZhou Wangong Precision Machinery Co., Ltd was founded in 2008 and is located in HangZhou City, ZHangZhoug Pro. China. We ahve built a R&D and profuction base of more than 52000m, Our expertise lies in manufacturing precision transmission components, As a distinguished high-tech enterprise, we seamlessly integrate research and development, production, sales, and service. We have successfully incorporated advanced equipment and cutting-edge technologies from renowned countries like Germany, Japan and ZheJiang .

Product Description

1,Product General information
a, Low frictional linear motion
Steel balls are accurately guided by a retainer, so low frictional resistance and stable linear motion can be achieved.
Simple replacement of conventional plain bushings
It is easy to use Linear Bushings instead of conventional plain bushings, because both types are used with a round shaft, and no major redesign is necessary.
b, Wide variations
For each dimensional series, standard, adjustable clearance and open types are available with and without seals, so the best linear bushing for the application may be selected. In addition to the standard type, the high-rigidity long type is available. These types can be selected to suit the requirements in applications.
c, Miniature linear bushing LM Compact design
Miniature Linear Bushing is very small in size, allowing for compact assembly in machines and equipment.

d,High Reliability

ERSK linear bearing has very stringent quality control standards covering every production process. With proper lubrication and use,trouble-free operation for an extended period of time is possible.

e,Smooth Operation

The high efficiency of linear shaft is vastly superior to conventional shaft. The torque required is less than 30%. Linear motion can be easily changed from rotary motion. The linear bearings are moved very smoothly in the linear shaft.

f,High Durability

Rigidly selected materials, intensive heat treating and processing techniques, backed by years of experience,have resulted in the most durable linear bearings manufactured.

g,Easy interchangable

h,Easy maintenance

the linear rails can replace the base surface installation, the old wear parts (rails and blocks) can be replaced, reduce costs.

i,Easy installation

the linear rails and carriages can be changed easily, reduce material costs, reduce product prices, reduce product replacement costs and time.

2,All kinds of linear motion bearing series

SC-V series SC8V, SC10V, SC12V, SC13V, SC16V, SC20V, SC25V, SC30V, SC35V, SC40V, SC50V, SC60V
SC-UU/SC-AJ series SC6, SC8, SC10, SC12, SC13, SC16, SC20, SC25, SC30, SC35, SC40, SC50, SC60
SC-L /SC-LAJ series SC8L,SC10L, SC12L, SC13L, SC16L, SC20L, SC25L, SC30L, SC35L, SC40L, SC50L, SC60L
SCE-V series SCE8V, SCE12V, SCE16V, SCE20V, SCE25V, SCE30V, SCE40V, SCE50V
SCE-UU/SCE-AJ series SCE8, SCE10, SCE12, SCE16, SCE20, SCE25, SCE30, SCE40, SCE50, SCE60
SCE-L/SCE-LAJ series SCE8L, SCE10L, SCE12L, SCE16L, SCE20L, SCE25L, SCE30L, SCE40L, SCE50L

       SC-V/SCE-V SC-UU/SCE-UU SC-AJ/SCE-AJ

 

        SK                      SC-L/SCE-L            SC-LAJ/SCE-LAJ

 

      SHF                                  linear motion support     linear bearing support

3,Specifications: 
 

SPECIFICATIONS for linear blocks

Items

Material

Surface Treatment

Linear bearing SC, SC-AJ, SC-L, SC-AJ-L

Aluminium alloy

Clear Anodized

Linear bearing SCE, SCE-AJ, SCE-L, SCE-AJ-L

Aluminium alloy

Clear Anodized

Linear shaft support SHF

Aluminium alloy

Clear Anodized

Linear shaft support SK 

Aluminium alloy

Clear Anodized

Linear shaft dia4 to dia120

S45C or GCr15

Induction heating and chrome plated

Linear bushing LM,LM-AJ, LM-L, LM-AJ-L

GCr15

Induction heating or electroless nickel plating

Linear bushing LME, LME-AJ, LME-L, LME-AJ-L

 

GCr15

Induction heating or electroless nickel plating

 

Detailed Photos

4,Detailed Images: High Precision Linear Bearing Linear Block 
 

Machine Parts

Name: linear shaft 
Brand: ERSK
Original: China
the linear shaft length can be customized according to your requirements. if the shaft need be done the machinized, please send the drawings, we are CZPT to do them

Machine Parts

Name: Linear block
Brand: ERSK
Original: China
aluminium alloy case, 
good surface and high precision
moving smoothly 
high interchangable

Main Features

Name: SK series 
Brand: ERSK
Original: China
SK series linear shaft support, 
high interchangable
mounted easily
good surface and high precision

Main Features

Name: linear ball bearing
Brand: ERSK
Original: China
GCr15 balls in the linear bearing

moving smoothly
high interchangable

Linear guide block is divied to flange type and slim type without flange.or Seal type block, 

Standard type block, Double bearing type block, Short type block.  Also, linear block is divided to high load capacity with standard block lenth and ultra high load capacity with longer block length.

Specification:
1,In stock
2,Performance: antifriction, interchangeable
3,Material:Aluminium allooy
4,Application: CNC or automatic machinery
5, Match: could match with linear guide or linear shaft in one machinery

5 Production Process:

 

Related products

ERSK manufacturer main products

Our Advantages

As a distinguished high-tech enterprise, we seamlessly integrate research and development, production, sales, and service. We have successfully incorporated advanced equipment and cutting-edge technologies from renowned countries like Germany, Japan, and ZheJiang . Our commitment to innovation has led to the acquisition of multiple product design patents, and we proudly adhere to ISO9001 certification standards.

Our service

Our Team:
Professional technicians, high-quality production workers, 24-hour salespersons
OUR PHILOSOPHY:
Integrity is at the core of our values, and providing excellent 
service is our top priority. We begin by understanding your 
needs and strive to ensure your utmost satisfaction, forging a mutually beneficial relationship.
OUR MISSION:
Through technology and innovation, we strive to enhance 
product quality and deliver exceptional products and services 
to you.
OUR VISION:
We are firmly dedicated to CZPT the CZPT of highquality standards and venturing into the realm of world-class 
advanced manufacturing industries.
We are excited about the opportunity to work with you and 
exceed your expectations.

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane
Material: Aluminium
Structure: Linear Guide
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Managing Contamination and Debris in Linear Bearings

Contamination and debris pose significant challenges to the proper functioning of linear bearings. However, various measures are employed to effectively manage these issues:

  • Preventive Sealing:

Linear bearings are often equipped with protective seals that act as barriers against contaminants. These seals prevent dust, dirt, and other particles from entering the bearing housing, thus reducing the risk of contamination.

  • Shielding:

Linear bearings can incorporate shields that offer an additional layer of protection against debris. Shields are designed to keep larger particles away from the bearing’s rolling elements, enhancing the bearing’s longevity.

  • Wipers and Scrapers:

Some linear bearings feature wipers or scrapers that actively remove debris from the bearing’s moving parts. These components help prevent the accumulation of contaminants that could compromise performance.

  • Regular Maintenance:

Periodic inspection and cleaning are crucial to maintaining the cleanliness of linear bearings. Routine maintenance procedures help identify and remove any foreign particles that may have entered the bearing housing.

  • Clean Environment:

Creating a clean operating environment is essential. In applications where contamination is a concern, steps are taken to minimize the presence of dust, dirt, and other pollutants in the vicinity of the linear bearings.

  • Proper Lubrication:

Lubrication not only reduces friction but also creates a barrier against contaminants. The lubricant can help prevent particles from adhering to bearing surfaces, facilitating their removal during maintenance.

  • Regular Inspections:

Frequent visual inspections can help identify early signs of contamination. Timely detection allows for prompt cleaning and maintenance, preventing further damage.

  • Appropriate Sealing Materials:

Using high-quality sealing materials that are resistant to wear and tear is essential. The right materials can effectively keep contaminants out while withstanding the operating conditions.

  • Choosing Suitable Environment:

Where possible, placing linear bearings in environments with lower levels of contamination or installing additional protective measures can help manage debris-related challenges.

By implementing these strategies, engineers and operators can effectively manage the challenges associated with contamination and debris, ensuring the optimal performance and longevity of linear bearings.

linear bearing

Linear Bearings: Definition and Applications

Linear bearings are mechanical components designed to facilitate smooth and controlled linear motion in a single direction. They are widely used across various industries to provide precise movement and guidance in applications where traditional rotary bearings are not suitable. Linear bearings offer several advantages and find use in a diverse range of applications:

  • Precision Machinery:

Linear bearings are a fundamental part of precision machinery such as CNC machines, laser cutting equipment, and coordinate measuring machines. They ensure accurate movement and positioning of tools and components, enabling high-quality and intricate work.

  • Industrial Automation:

In automated manufacturing and assembly lines, linear bearings play a critical role in moving robotic arms, conveyors, and various stages along predefined paths. Their ability to provide smooth and repeatable motion contributes to increased production efficiency.

  • Medical Devices:

Linear bearings are essential in medical devices like diagnostic machines, imaging systems, and robotic surgical equipment. They enable precise movement and positioning required for accurate diagnoses and minimally invasive procedures.

  • Packaging Machinery:

In packaging industries, linear bearings guide the motion of conveyor belts, sealing mechanisms, and labeling devices. These bearings ensure consistent and reliable packaging processes.

  • Material Handling:

Linear bearings are used in various material handling equipment such as pick-and-place systems, automated warehouses, and sorting machines. They enable efficient movement of goods and materials with reduced friction and wear.

  • Semiconductor Manufacturing:

In semiconductor fabrication, where extreme precision is crucial, linear bearings are employed in wafer handling, chip assembly, and inspection equipment. They ensure contamination-free motion and positioning of delicate components.

  • Textile Machinery:

Textile machines use linear bearings for guiding yarn paths, thread tensioning, and controlling the movement of fabric during weaving and knitting. These bearings contribute to the quality and efficiency of textile production.

  • Automotive Manufacturing:

Linear bearings are found in automotive assembly lines for tasks such as welding, painting, and component installation. They provide accurate movement and positioning of vehicle parts, contributing to the production process.

  • Aerospace and Defense:

In aerospace applications, linear bearings are used in various mechanisms, including aircraft seats, control surfaces, and satellite deployment systems. Their reliability and precision are crucial in these demanding environments.

  • Renewable Energy:

In wind turbines and solar panel manufacturing, linear bearings are used to adjust the positioning of blades, solar panels, and tracking systems. They contribute to the efficiency of renewable energy generation.

Overall, linear bearings offer precise, controlled, and smooth linear motion in diverse applications across industries. Their ability to guide and support loads while minimizing friction and wear makes them essential components for achieving accurate movement and improved operational efficiency.

China Best Sales Lm35uu Linear Motion Ball Bearing Auto CNC Machine Parts Slide Bearing   supplierChina Best Sales Lm35uu Linear Motion Ball Bearing Auto CNC Machine Parts Slide Bearing   supplier
editor by CX 2024-05-16

China Best Sales 6702zz 2RS 15X21X4mm Bicycle Electric Motorcycle Single Row Deep Groove Ball Bearing bearing and race

Product Description

Silicon nitride rolling elements have higher hardness, making hybrid bearings suitable for difficult conditions and polluting environments;
Hybrid bearings generate low heat from friction, especially at high speeds, contributing to longer bearing life and longer lubrication intervals.

 

 

 

Model Dumber(ZZ/2RZ)

Internal Diameter(mm)

External Diameter(mm)

Thickness(mm)

6700

10

15

4

6701

12

18

4

6702

15

21

4

6703

17

23

4

6704

20

27

4

6705

25

32

4

6706

30

37

4

6707

35

44

5

6708

40

50

6

6709

45

55

6

6710

50

62

6

product-list-1.htmlHangZhou Terry Machinery Co.Ltd is a leading supplier of bearings, Linear motion system for CNC , Ball transfer Unit and transmission component .the growing industrial and Favorable policy of HangZhou benefit the development of Terry Machinery .Our products are utilized in industrial, motorcycle, vehicle and Automation applications. Now we are exporting to 46 countries. including USA, GBR , Germany , Spain, Poland ,Turkey ect .The Goal of Terry Machinery to provide out customers with widest range of products at competitive prices, backed with the best Service.OUR ADVANTAGE Products Our major products & Supplied:Meet all the international standards and ISO9001 -TS1694 Certificate Big volume in Stock, No MOQ required Personnel Our salespersons are well trained to accommodate your requests and speak English for your conveniences.Our technicians and engineers Experience in the Industry area exceeds 23 years Service &Quality control ,We supply detailed drawings and offer when ever necessary,We help all customers promote and improve their sales.We inspect every piece of products by ourselves before delivery.

DELIVERY & PACKING
 F A QFEEDBACK

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Long Life
Number of Row: Single Row
Model Number: 6702zz 2RS
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ball bearing

How does Preload Affect the Performance and Efficiency of Ball Bearings?

Preload is a crucial factor in ball bearing design that significantly impacts the performance, efficiency, and overall behavior of the bearings in various applications. Preload refers to the intentional axial force applied to the bearing’s rolling elements before it is mounted. This force eliminates internal clearance and creates contact between the rolling elements and the raceways. Here’s how preload affects ball bearing performance:

  • Reduction of Internal Clearance:

Applying preload reduces the internal clearance between the rolling elements and the raceways. This eliminates play within the bearing, ensuring that the rolling elements are in constant contact with the raceways. This reduced internal clearance enhances precision and reduces vibrations during operation.

  • Increased Stiffness:

Preloaded bearings are stiffer due to the elimination of internal clearance. This increased stiffness improves the bearing’s ability to handle axial and radial loads with higher accuracy and minimal deflection.

  • Minimized Axial Play:

Preload minimizes or eliminates axial play within the bearing. This is especially important in applications where axial movement needs to be minimized, such as machine tool spindles and precision instruments.

  • Enhanced Rigidity:

The stiffness resulting from preload enhances the bearing’s rigidity, making it less susceptible to deformation under load. This is critical for maintaining precision and accuracy in applications that require minimal deflection.

  • Reduction in Ball Slippage:

Preload reduces the likelihood of ball slippage within the bearing, ensuring consistent contact between the rolling elements and the raceways. This leads to improved efficiency and better load distribution.

  • Improved Running Accuracy:

Preloading enhances the running accuracy of the bearing, ensuring that it maintains precise rotational characteristics even under varying loads and speeds. This is essential for applications requiring high accuracy and repeatability.

  • Optimized Performance at High Speeds:

Preload helps prevent skidding and slipping of the rolling elements during high-speed operation. This ensures that the bearing remains stable, reducing the risk of noise, vibration, and premature wear.

  • Impact on Friction and Heat Generation:

While preload reduces internal clearance and friction, excessive preload can lead to higher friction and increased heat generation. A balance must be struck between optimal preload and minimizing friction-related issues.

  • Application-Specific Considerations:

The appropriate amount of preload depends on the application’s requirements, such as load, speed, accuracy, and operating conditions. Over-preloading can lead to increased stress and premature bearing failure, while under-preloading may result in inadequate rigidity and reduced performance.

Overall, preload plays a critical role in optimizing the performance, accuracy, and efficiency of ball bearings. Engineers must carefully determine the right preload level for their specific applications to achieve the desired performance characteristics and avoid potential issues related to overloading or inadequate rigidity.

ball bearing

What are the Differences between Deep Groove Ball Bearings and Angular Contact Ball Bearings?

Deep groove ball bearings and angular contact ball bearings are two common types of ball bearings, each designed for specific applications and load conditions. Here are the key differences between these two types of bearings:

  • Design and Geometry:

Deep Groove Ball Bearings:

Deep groove ball bearings have a simple design with a single row of balls that run along deep raceways in both the inner and outer rings. The rings are usually symmetrical and non-separable, resulting in a balanced load distribution.

Angular Contact Ball Bearings:

Angular contact ball bearings have a more complex design with two rows of balls, oriented at an angle to the bearing’s axis. This arrangement allows for the transmission of both radial and axial loads, making them suitable for combined loads and applications requiring high precision.

  • Load Carrying Capacity:

Deep Groove Ball Bearings:

Deep groove ball bearings are primarily designed to carry radial loads. They can handle axial loads in both directions, but their axial load-carrying capacity is generally lower compared to angular contact ball bearings.

Angular Contact Ball Bearings:

Angular contact ball bearings are specifically designed to handle both radial and axial loads. The contact angle between the rows of balls determines the bearings’ axial load-carrying capacity. They can handle higher axial loads and are commonly used in applications with thrust loads.

  • Contact Angle:

Deep Groove Ball Bearings:

Deep groove ball bearings have no defined contact angle, as the balls move in a deep groove along the raceways. They are primarily designed for radial loads.

Angular Contact Ball Bearings:

Angular contact ball bearings have a specified contact angle between the rows of balls. This contact angle allows them to carry both radial and axial loads and is crucial for their ability to handle combined loads.

  • Applications:

Deep Groove Ball Bearings:

Deep groove ball bearings are commonly used in applications that primarily require radial loads, such as electric motors, pumps, and conveyor systems. They are also suitable for high-speed operation.

Angular Contact Ball Bearings:

Angular contact ball bearings are used in applications where both radial and axial loads are present, such as in machine tools, automotive wheel hubs, and aerospace components. They are especially useful for applications that require precise axial positioning and handling of thrust loads.

  • Limitations:

Deep Groove Ball Bearings:

Deep groove ball bearings are not as suitable for handling significant axial loads and may experience skidding under certain conditions due to their deep raceways.

Angular Contact Ball Bearings:

Angular contact ball bearings can experience increased heat generation and wear at higher speeds due to the contact angle of the balls.

In summary, the design, load-carrying capacity, contact angle, and applications differ between deep groove ball bearings and angular contact ball bearings. Choosing the appropriate type depends on the specific load conditions and requirements of the application.

ball bearing

What is a Ball Bearing and How does it Function in Various Applications?

A ball bearing is a type of rolling-element bearing that uses balls to reduce friction between moving parts and support radial and axial loads. It consists of an outer ring, an inner ring, a set of balls, and a cage that separates and maintains a consistent spacing between the balls. Here’s how ball bearings function in various applications:

  • Reduction of Friction:

Ball bearings function by replacing sliding friction with rolling friction. The smooth, spherical balls minimize the contact area between the inner and outer rings, resulting in lower friction and reduced heat generation.

  • Radial and Axial Load Support:

Ball bearings are designed to support both radial loads (forces perpendicular to the shaft’s axis) and axial loads (forces parallel to the shaft’s axis). The distribution of balls within the bearing ensures load-carrying capacity in multiple directions.

  • Smooth Rotational Movement:

Ball bearings facilitate smooth and precise rotational movement. The rolling motion of the balls allows for controlled and continuous rotation with minimal resistance.

  • Applications in Machinery:

Ball bearings are used in a wide range of machinery and equipment, including motors, generators, gearboxes, conveyors, and fans. They enable the efficient transfer of motion while reducing wear and energy losses.

  • Automotive Industry:

Ball bearings are extensively used in automobiles for various applications, including wheel hubs, transmission systems, steering mechanisms, and engine components. They provide reliability and durability in challenging automotive environments.

  • Industrial Machinery:

In industrial settings, ball bearings support rotating shafts and ensure the smooth operation of equipment such as pumps, compressors, and machine tools.

  • High-Speed Applications:

Ball bearings are suitable for high-speed applications due to their low friction and ability to accommodate rapid rotation. They are used in applications like electric motors and aerospace components.

  • Precision Instruments:

For precision instruments, such as watches, cameras, and medical devices, ball bearings provide accurate rotational movement and contribute to the overall performance of the instrument.

  • Variety of Sizes and Types:

Ball bearings come in various sizes, configurations, and materials to suit different applications. Different types include deep groove ball bearings, angular contact ball bearings, thrust ball bearings, and more.

In summary, ball bearings are essential components in a wide range of applications where smooth rotation, load support, and reduced friction are critical. Their versatility, reliability, and efficiency make them indispensable in industries spanning from automotive to industrial machinery to precision instruments.

China Best Sales 6702zz 2RS 15X21X4mm Bicycle Electric Motorcycle Single Row Deep Groove Ball Bearing   bearing and raceChina Best Sales 6702zz 2RS 15X21X4mm Bicycle Electric Motorcycle Single Row Deep Groove Ball Bearing   bearing and race
editor by CX 2024-05-14

China Best Sales Linear Guide Rail Bearing 35ca1r800z0c for Goods Yard Crane deep groove ball bearing

Product Description

 

Roller linear CZPT rail, cylindrical linear CZPT rail, and ball linear CZPT rail are 3 types used to support and CZPT moving components to perform reciprocating linear motion in a given direction. According to the friction property, linear motion CZPT can be divided into sliding

Brand SHAC,H.S.A.C
Precision C/H/P
Model GHH/GHW/GEH/GEW/MGN/MGW
Size customize Available
Maximum length 4000MM
Raw Materail S55C,SCM420H
HS CODE 8466939000,8483300090
Items packing Plastic bag+Cartons+Plywood boxes.According to our customer’s request.
Payment terms L/C,TT,Westeb Union
Production lead time Base on customer required quantity,by negotiated
Samples Value less than $20 free samples and sample catalogue available,sample express request pay by clients
Application CNC machines,machine tools,Industrial Machinery,Pringting Machine,Paper-processing machine,automatic machines,textiles machines,electronic machinery,transport machinery,Robot,etc

The analytical diagram of the linear CZPT rail is as follows

As follows linear guide&block are in stock:(compatible with HIWIN linear guide)

GH series rail GHR15,GHR20,GHR25,GHR30,GHR35,GHR45
GHH..CA square block GHH15CA,GHH20CA,GHH25CA,GHH30CA,GHH35CA,GHH45CA
GHW..CC flange block GHW15CC,GHW20CC,GHW25CC,GHW30CC,GHW35CC,GHW45CC
GHH..HA lengthen GHH20HA,GHH25HA,GHH30HA,GHH35HA,GHH45HA
GHW..HC lengthen GHW15HC,GHW20HC,GHW25HC,GHW30HC,GHW35HC,GHW45HC
GE low assembly rail GER15,GER20,GER25
GEH..CA GEH15CA,GEH20CA,GEH25CA
GEH..SA GEH15SA,GEH20SA
GEW..CA GEW15CA,GEW20CA,GEW25CA
MGN rail MGNR5,MGR7,MGR9,MGR12,MGR15
MGN..C MGN5C,MGN7C,MGN9C,MGN12C,MGN15C
MGN..H MGN7H,MGN9H,MGN12H,MGN15H
MGW rail MGW7,MGW9,MGW12,MGW15
MGW..C MGW7C,MGW9C,MGW12C,MGW15C
MGW..H MGW7H,MGW9H,MGW12H,MGW15H

Performance

Support rail unit is assembled of Support Rail, LM Shaft, and Open type Linear Bushing Case.
All components are standardized for providing interchangeability and less cost and designing time.

 

Product Feature of Linear Support Rail Unit:
1.Interchangeable
2.Max length: 4000mm
3.High quality standard

4. Rail:  Length can be cut freely.

 

Our Advantages

1.Our Team:

We have experienced and qualified team of marketing and sales representatives to serve our valued customers with the finest products and unsurpassed service.And have professional engineers team to assessment and development the new precision products,and make the OEM customized more easily,experienced QC team to test the products quaity ensure the goods quality before delivery out.
2.Our products:
Quality is the life .We use only the best quality material to ensure the precision of our
Product.All products we sold out are strictly selected and tested by our QC department.
3.Payment:
We accept payment via TT (Bank transfer), L/C,Western Union.
4.Shipping method:
Including DHL, UPS, TNT, FEDEX,EMS, Airfreight and by Sea,as customer required.
 

Precautions

Linear guides are precision components, so a considerable caution is required when using them.
Even if high-performance linear guides are used improperly, they cannot achieve the expected performance effect and are prone to damage. Therefore, when using linear guides, the following precautions should be taken:

1.Prevent rusting
When directly picking up the linear CZPT rail by hand, it is necessary to thoroughly wash the sweat off the hands and apply high-quality mineral oil before proceeding with the operation. Special attention should be paid to rust prevention during the rainy season and summer.
2.Keep the environment clean
Keeping the linear CZPT rail and its surrounding environment clean, even small dust that cannot be seen by the naked eye entering the CZPT rail, will increase the wear, vibration, and noise of the CZPT rail.
3.Installation should be careful and careful
When using and installing linear CZPT rails, it is necessary to be careful and careful. It is not allowed to forcefully punch, directly hit the CZPT rails with a hammer, or transmit pressure through rolling elements.
4.Installation tools should be suitable
Use suitable and accurate installation tools for the linear CZPT rail, and try to use specialized tools as much as possible, avoiding the use of fabrics and short fibers.

Application:
1. Automatic controlling machine
2. Semi-conductor industry
3. General industry machinery
4. Medical equipment
5. Solar energy equipment
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment, etc.

 

Packaging & Shipping

        Package of Linear Slide Unit:

1. Standard export packing

2. According to the customers’ request

Shipping:

           1. Lead time: around 8-15 days, pls confirm before order;

           2. Incoterm: FOB, C&F, CIF;

           3. Delivery Cost: Pls advise the port of destination and we could assist to check it for you;

           4. Payment Term: T/T; L/C; PayPal; Alibaba Trade Assurance.

 

FAQ

1.Is the company a production factory or a trading company?

ZheJiang Dente International Trade Co.,Ltd is a manufacturing enterprise focusing on bearings and integrating research, production and sales.

2.How many the MOQ of your company?

Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

3.Does the company accept OEM or customized bearings?
In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

4.What are the company’s delivery terms?
We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.
5.What is your delivery time?
Most orders will be shipped within 7-15 days of payment being received.

Any problems, pls feel free to contact us.100% after-sales service!

 We can supply high-quality bearing products with competitive price and the shortest delivery time if you choose us!

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane
Material: Steel
Structure: Tyre Crane
Samples:
US$ 0.3/Piece
1 Piece(Min.Order)

|

Order Sample

Chrome steel
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Challenges and Solutions for Addressing Friction and Wear in Linear Bearings

Friction and wear are common challenges in linear bearings that can impact their performance and lifespan. Here are the challenges and some solutions to address them:

  • 1. Challenge: Friction:

Friction between the bearing components can lead to increased energy consumption, heat generation, and reduced efficiency.

  • Solution: Lubrication:

Proper lubrication is essential to minimize friction. Lubricants reduce the contact between moving parts, allowing smoother motion and reducing wear. Choosing the right lubricant and applying it correctly can significantly mitigate friction-related issues.

  • 2. Challenge: Wear:

Continuous movement can lead to wear on the bearing surfaces, affecting precision and performance over time.

  • Solution: Regular Maintenance:

Implementing a regular maintenance schedule can help monitor wear and replace worn components before they compromise performance. This includes cleaning, re-lubrication, and periodic inspection of the bearing’s condition.

  • 3. Challenge: Contaminants:

Dust, debris, and foreign particles can enter the bearing system, leading to increased friction and accelerated wear.

  • Solution: Sealing and Protection:

Using seals, covers, or protective enclosures can help prevent contaminants from entering the bearing system. These protective measures maintain the integrity of the lubricant and extend the bearing’s lifespan.

  • 4. Challenge: Improper Installation:

If linear bearings are not installed correctly, misalignment and uneven load distribution can contribute to friction and wear.

  • Solution: Precise Installation:

Follow manufacturer guidelines for proper installation, ensuring accurate alignment and even load distribution. This reduces the risk of premature wear and ensures optimal performance.

  • 5. Challenge: Inadequate Lubrication:

If the linear bearings are under-lubricated or over-lubricated, it can lead to increased friction and wear.

  • Solution: Lubrication Management:

Monitor and manage lubrication levels to ensure they are within the recommended range. Regularly assess the lubricant’s condition and replenish as needed to maintain optimal performance.

  • 6. Challenge: High Loads and Speeds:

High loads and speeds can increase friction and wear on linear bearings.

  • Solution: Proper Selection:

Select linear bearings that are designed to handle the specific loads and speeds of the application. This ensures that the bearings can operate effectively under the given conditions.

Addressing friction and wear challenges in linear bearings requires a combination of proper maintenance practices, appropriate lubrication, protective measures, and careful selection of bearings. By implementing these solutions, the performance and longevity of linear bearings can be optimized.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China Best Sales Linear Guide Rail Bearing 35ca1r800z0c for Goods Yard Crane   deep groove ball bearingChina Best Sales Linear Guide Rail Bearing 35ca1r800z0c for Goods Yard Crane   deep groove ball bearing
editor by CX 2024-05-14

China Hot selling Factory Direct Open Motion Ball Bearing Bush Lm12uu Linear Bearing with Best Sales

Product Description

Product Description

      Linear bearing is a low-cost linear motion system used with the cylindrical shaft for unlimited travel. The working load of such bearings is small due to the point contact of the ball and the shaft. The balls can rotate with minimal frictional resistance, thus obtaining high-precision smooth movement.

Detailed Photos

Series:

“LM”   metric standard type linear bearing  
“LME”  inch standard type linear bearing

“UU”   rubber seals on the both sides of the long type linear bearing 
“OP” open type linear bearing
“AJ” adjustment type linear bearing

*LM…UU: LM…(sylinder), LM…OP(open type), LM…AJ(clearance adustable) 
*LME…UU: LME…(sylinder), LME…OP(open type), LME…AJ(clearance adustable), LM…UU & LME…UU: Long type 
*KH: High-precision mini bearing
 

 

 

Product Parameters

  MODEL NO.
LM linear bearing LM 3UU, LM 4UU, LM 5UU, LM 6UU, LM 8UU, LM 10UU, LM 12UU, LM 13UU, LM 16UU, LM 20UU, LM 25UU, LM 30UU, LM 35UU, LM 40UU, LM 50UU, LM 60UU, LM 80UU, LM 100UU, LM 120UU, LM 150UU

LM Open Series

linear bearing

LM 10OPUU, LM 12OPUU, LM 13OPUU, LM 16OPUU, LM 20OPUU, LM 25OPUU, 
LM 30OPU, LM 35OPUU, LM 40OPUU, LM 50OPUU, LM60OPUU, LM 80OPUU, LM 100OPUU, LM 120OPUU, LM150OPUU
LB linear bearing LB 6UU, LB 8UU, LB 10UU, LB 12UU, LB13 UU, LB16UU, LB 20UU, LB25UU, 
LB 30UU, LB 35UU, LB 40UU, LB 50UU, LB 60UU, LB 80UU, LB 100UU, LB120UU, LB 150UU
LM E Linear bearing LME 5UU, LME 8UU, LME 12UU, LME 16UU, LME 20UU, LME 25UU, LME 30UU, LME 40UU, LME 50UU, LME 60UU, LME 80UU
LM  L linear bearing LM 6LUU, LM 8LUU, LM 10LUU, LM 12LUU, LM 13LUU, LM 16LUU, LM 20LUU, LM 25LUU, LM 30LUU, LM 35LUU, LM 40LUU, LM 50LUU, LM 60LUU
KH type linear bearing KH 0622PP,KH 0824PP, KH 1026PP, KH 1228PP, KH 1630PP, KH 2030PP, 
KH 2540PP, KH 3050PP, KH 4060PP, KH5070PP

Steel Cage

Linear Bearing

LM 12GA, LM 16GA, LM 20GA, LM 25GA, LM 30GA, 
LM 12M, LM 16M, LM 20M, LM 25M, LM30M
SDM series Stell cage linear bearing(As same as Ease SDM series) SDM 16, SDM 20, SDM 25, SDM 30, SDM 35, SDM 40, SDM 50, SDM 60, SDM 80, SDM 100, SDM120, SDM150
SK Linear bearing SK 10, SK 12, SK 13, SK 16, SK 20, SK 25, SK 30, SK 35, SK 40
SHF Linear bearing SHF 10, SHF 12,  SHF 13, SHF 16, SHF 20, SHF 25, SHF 30, SHF 35, SHF 40

Flange type

linear bearing

LMF6UU, LMF8UU, LMF10UU, LMF12UU, LMF13UU, LMF16UU, LMF20UU, LMF25UU, LMF30UU, LMF35UU, LMF40UU, LMF50UU, LMF60UU, LMF80UU, LMF100UU
LMK6UU, LMK8UU, LMK10UU, LMK12UU, LMK13UU, LMK16UU, LMK20UU, LMK25UU, LMK30UU, LMK35UU, LMK40UU, LMK50UU, LMK60UU, LMK80UU, LMK100UU

LMT6UU,LMT8UU,LMT10UU,LMT12UU,LMT13UU,LMT16UU,LMT20UU,

LMT25UU,LMT30UU

 

Application

Electronic equipment, Food machinery, Packaging machinery, Medical machinery, Printing machinery, Textile machinery, Robots, Tool machinery, CNC machine tools, Automobiles and Digital three-dimensional coordinate measuring equipment

Company Profile

     ZheJiang Yaoshuo Bearing Manufacturing Co., Ltd. is a professional manufacturer of bearing with high bearing capacity, integrating research and development, design, production and sales.
        We “take the customer as the center, to provide customers with market competitive bearings” for the development of principle, from the inception has insisted on independent technology, promoting innovation and development, with excellent product quality and excellent service for the enterprise to build the good reputation, the company specializing in the production of tapered roller bearings, automobile wheel hub bearings and spherical roller bearings, customized 0 to 9 class a variety of criteria Non-standard bearings, The products are exported to Europe, Russia, United Arab Emirates, Singapore, Australia and other countries.

 

1. Easy to Assemble and Replace

2. High Precision and High Rigidity

3. High Load and High Stability

4. High Speed, Low Noise and Anti-friction

5. Long Life and Durable

 

 

FAQ

Q: Are you a factory or trading company?

A: The type of our company is factory + trading. We have our own factories. 

 

Q: Why choose us?

A: 1. We have the experience of bearing manufacturing more than 20 years.

  

Q: Can you provide samples for free?

A: Yes, we can provide some samples for free, but the freight should be afford by customer.

 

Q: How about the transportation methods?

A: If it’s small quantity , we suggest to send by post express, such as DHL, UPS, FEDEX. If it’s large amount, we suggest yo send by air or sea shipping.

 

Q: What about the payment?

A: We accept paypal, western union,T/T
 

Dimensions slide bush weight
(kg/m)
SBR10UU LM10UU-OP 65

SBR13UU

LM13UU-OP 100
SBR16UU LM16UU-OP 150

SBR20UU

LM20UU-OP 200
SBR25UU LM25UU-OP 450
SBR30UU LM30UU-OP 630
SBR35UU LM35UU-OP 925
SBR40UU LM40UU-OP 1330
SBR50UU LM50UU-OP 3000
SBR16LUU LM16LUU-OP 300
SBR20LUU LM20LUU-OP 400
SBR25LUU LM25LUU-OP 900
SBR30LUU LM30LUU-OP 1260
SBR40LUU LM40LUU-OP 2660

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Corrosion Resistant, High Speed
Function: Super
Flange Shape: Circular
Shape: Flange
Type: Universal
Application: CNC, 3D Printer
Samples:
US$ 10/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Considerations for Selecting the Right Type and Size of Linear Bearing

Choosing the appropriate type and size of linear bearing requires careful consideration of various factors to ensure optimal performance and compatibility with the application. Here are important considerations to keep in mind:

  • 1. Load Capacity:

Determine the maximum load the linear bearing will need to support. Consider both static and dynamic loads to select a bearing that can handle the expected weight and forces.

  • 2. Speed and Acceleration:

Assess the required speed and acceleration of the linear motion. Different linear bearing types have different speed limitations, so choose one that can accommodate the desired motion profile.

  • 3. Precision and Accuracy:

If your application requires precise positioning, choose linear bearings that offer high accuracy and repeatability. Linear ball bearings are known for their precision, while linear roller bearings offer higher load capacity.

  • 4. Environment:

Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Select linear bearings that are designed to withstand the specific environmental conditions.

  • 5. Rail or Shaft Compatibility:

Ensure that the chosen linear bearing is compatible with the rail or shaft you intend to use. Proper fit and alignment are crucial for smooth motion and long bearing life.

  • 6. Space Constraints:

If your application has limited space, choose compact linear bearings that can fit within the available area without compromising performance.

  • 7. Maintenance Requirements:

Consider the level of maintenance your application can accommodate. Some linear bearings are self-lubricating, reducing the need for frequent maintenance.

  • 8. Noise Level:

For noise-sensitive environments, opt for linear bearings that provide quiet operation to avoid disruptions caused by excessive noise.

  • 9. Mounting Options:

Consider how the linear bearing will be mounted and integrated into your system. Different bearings may require specific mounting configurations.

  • 10. Cost and Budget:

Balance the desired features and performance with your budget constraints. While high-performance linear bearings may offer advanced features, they can also come at a higher cost.

By carefully evaluating these factors, you can choose the most suitable type and size of linear bearing for your specific application. Consulting with bearing manufacturers and engineers can also provide valuable insights to ensure the optimal selection.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China Hot selling Factory Direct Open Motion Ball Bearing Bush Lm12uu Linear Bearing   with Best SalesChina Hot selling Factory Direct Open Motion Ball Bearing Bush Lm12uu Linear Bearing   with Best Sales
editor by CX 2024-05-14

China Best Sales Linear Guide/Equipment Bearing/Clutch Release Bearing/Repair Kit/Stainless Steel Beads/Excavator Bearing Price/Repair Kit/Bicycle Spare Part Sx011832 carrier bearing

Product Description

Cross roller bearings are cylindrical rollers vertically arranged on the 900 V-shaped groove rolling surface through isolation blocks, so cross roller bearings can bear multi-directional loads such as radial load, axial load and torque load. The size of the inner and outer ring is miniaturized, and the extremely thin form is a small size close to the limit, with high rigidity, and the accuracy can reach P4 and P2. Therefore, it is suitable for joint and rotating parts of industrial robots, rotating tables of machining centers, manipulator rotating parts, precision rotating worktables, medical machines, calculators, IC manufacturing devices and other equipment.

Shaft diameter Nominal model Main dimensions mm Installation sizemm Basic load rating (radial) weight
mm  
    Inner diameter Outer diameter width Roller pitch diameter S h Dynamic load       C Static load  
    d D B dp kN kN
            Ds dh Ca Coa Cr Cor kg
70 SX011814 70 90 10 80 79.5 80.5 18 60 12 30 0.3
90 SX011818 90 115 13 102 101.5 102.5 26 96 17 47 0.4
100 SX011820 100 125 13 112 111.5 112.5 28 106 18 52 0.5
120 SX011824 120 150 16 135 134.4 135.6 41 153 26 75 0.8
140 SX011828 140 175 18 157 156.3 157.7 64 237 41 116 1.1
160 SX011832 160 200 20 180 179.2 180.8 69 272 44 133 1.7
180 SX011836 180 225 22 202 201.2 202.8 98 381 63 187 2.3
200 SX011840 200 250 24 225 224.2 225.8 106 425 68 208 3.1
240 SX011848 240 300 28 270 269.2 270.8 149 612 95 300 5.3
300 SX011860 300 380 38 340 339.2 340.8 245 1571 156 504 12
340 SX011868 340 420 38 380 379.2 380.8 265 1148 167 363 13.5
400 SX011880 400 500 46 450 449 451 385 1699 244 833 24
500 SX0118/500 500 620 56 560 558.8 561.2 560 2538 355 1244 44

ZheJiang REET BEARING.CO.,LTD is a professional bearing manufacturer and exporter.
We have a wealth of technical.All producing processes are finished in our manufactory. As an ISO9001:2000 certified manufacturer,we will solve various problems in application and use of our bearings. 
Our company is an authorized distributor of FAG, INA, CZPT and other world brand bearings.Our company has the right to self-export bearings and launches its own brand RTB.
Our bearing had been exported to more than 20 countries worldwide and are warmly welcomed.
We are looking forward to your order.
FAQ

1.Is the company a production factory or a trading company?
ZheJiang REET BEARING CO.,LTD is a manufacturing enterprise focusing on bearings and integrating research, production and sales.

2.How many the MOQ of your company?
Depending on the size of the bearing, the MOQ is variable, if you are interested, you can contact me for a quote.

3.Does the company accept OEM or customized bearings?
In addition to standard products, we also supply non-standard and modified standard products for special application. Meanwhile, we provide OEM service.

4.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

5.What are the company’s delivery terms?
We can accept EXW,FOB,CFR,CIF,etc. You can choose the 1 which is the most convenient cost effective for you.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Single
Outer Dimension: Medium and Large(120-190mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: Thrust Bearing
Samples:
US$ 7/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

linear bearing

Differences between Open-Type and Closed-Type Linear Bearings

Open-type and closed-type linear bearings are two common variations used in linear motion systems, each with its own advantages and considerations:

  • 1. Open-Type Linear Bearings:

Open-type linear bearings, as the name suggests, have an open design that allows easy access to the bearing’s rolling elements and raceways. These bearings are characterized by:

  • Quick Maintenance: Open-type bearings are easier to clean, lubricate, and inspect due to their open structure, making maintenance more convenient.
  • Increased Contamination Risk: Because they are exposed, open-type bearings are more susceptible to dust, debris, and contamination, which can affect their performance and lifespan.
  • 2. Closed-Type Linear Bearings:

Closed-type linear bearings are enclosed within a housing or carriage that provides protection from external elements. These bearings offer the following features:

  • Enhanced Contamination Protection: Closed-type bearings are less vulnerable to contaminants and offer improved protection against dust, dirt, and debris, leading to longer service life.
  • Reduced Accessibility: Maintenance and inspection of closed-type bearings might be more complex due to the need to disassemble the housing or carriage for access.
  • Reduced Noise: The enclosed design of closed-type bearings can contribute to reduced noise levels, which is advantageous in noise-sensitive applications.

Choosing between open-type and closed-type linear bearings depends on the specific requirements of the application. If easy maintenance and accessibility are crucial, open-type bearings might be preferred. On the other hand, closed-type bearings offer better protection against contaminants and reduced noise, making them suitable for environments where cleanliness and quiet operation are essential.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China Best Sales Linear Guide/Equipment Bearing/Clutch Release Bearing/Repair Kit/Stainless Steel Beads/Excavator Bearing Price/Repair Kit/Bicycle Spare Part Sx011832   carrier bearingChina Best Sales Linear Guide/Equipment Bearing/Clutch Release Bearing/Repair Kit/Stainless Steel Beads/Excavator Bearing Price/Repair Kit/Bicycle Spare Part Sx011832   carrier bearing
editor by CX 2024-05-13

China high quality Manufacturers Direct Sales of High Quality Lm Series Bearinglm20uu Lm25uu Lm30uu CNC Linear Bearing Are Suitable for Electronic Equipment/Food Machinery Bearing bearing bronze

Product Description

Linear bearing is a linear motion system used for linear stroke and cylindrical shaft.
Because the bearing ball and the bearing jacket are point contact, the steel ball rolls with small friction resistance, so the linear bearing has small friction and relatively stable characteristics, does not change with the bearing speed, and can obtain a stable linear movement with high sensitivity and high precision.

Product Name Linear bearing
Brand Name  KSA
Material Gcr15
Precision Grade P0,P6,P5
Certification ISO 9001
Packeage Box /Carton/Wooden Box/Plastic Tube or Per buyers requirement
MOQ Depending On Moedl
Serice OEM
Sample Available
Payment TT or L/C or Western Union
Port HangZhou ZheJiang HangZhou

Product Description

Company Profile

                   ZheJiang Kangshi Precision Bearing Manufacturing Co., Ltd., located in Yandian Town Industrial Park, HangZhou City, ZheJiang Province, mainly produces zero deep groove ball bearings, 2 types of cylindrical roller bearings, 3 types of aligning roller bearings, 6 types of angular contact ball bearings, 7 types of tapered roller bearings, 8 types of thrust ball bearings, thrust bearings, 9 types of thrust aligning roller bearings, outer spherical bearings, auto parts, Motorcycle parts and other rolling bearings. Our factory has strong professional technology, good production equipment and perfect testing means, can fully meet the various types, specifications, high precision and special use requirements of bearing products customized processing, the production process of the product according to the strict national standards of enterprise internal control standards for the implementation of full inspection and multi-project comprehensive inspection of factory products, Can ensure the quality of each set of factory bearing products to meet national standards. Kangshi bearing has always implemented national standards, market prices, and implemented the “three guarantees” principle for customers: To ensure high-quality quality, preferential prices, superior after-sales service! Welcome customers at home and abroad to consult and negotiate business, the company will continue to win the trust of more customers with good product quality and reputation.

Our certificate

Scope of application

Used in electronic equipment, printing machinery, tobacco machinery, medical machinery, textile machinery, food processing machinery, packaging machinery, robots, power tools, CNC machine tools, automobiles and digital three-dimensional coordinate measuring equipment and other precision equipment or special machinery industry.

                 durable                                Heat treatment technology                         Keep clean

With high-end technology manufacturing,         After advanced quenching heat treatment,          Even tiny dust that is invisible to the 
each product has high hardness and high        the bearing has enough hardness to ensure        naked eye can have adverse effects, 
quality of its own performance                          the load carrying capacity                                     so keep your surroundings clean
 

FAQ

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail for more information.
Q: How about the package?
A: Industrial packing in general condition (Plastic drums/boxes/industrial packaging + cartons + pallets). Accept design package when OEM.
Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.
Q:What are the advantages of your company’s services compared to other companies?
A: Factory direct supply, price advantage, 24 hours online timely reply, Provide customers with customs clearance 
and quality of various documents, 100% after-sales service
Q:OEM POLICY
A:We can printing your brand (logo,artwork)on the bearings or laser engraving your brand on the bearings.
    We can custom your packaging according to your design All copyright own by clients and we  promised  don’t 
    disclose any info.
Q:How to contact us quickly?
A:Please send us an inquiry or message and leave your other contact information, such as phone number,
     account or account, we will contact you as soon as possible and provide the detailed information
    you need.

             Please feel free to contact us, if you have any other question

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Oval
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Signs of Wear or Damage in Linear Bearings and Maintenance

Identifying signs of wear or damage in linear bearings is essential for maintaining their performance and preventing costly failures. Here are common signs of wear and damage and how to address them:

  • 1. Increased Friction:

If you notice increased resistance during linear motion, it could indicate that the bearing components are wearing out. This can lead to reduced efficiency and accuracy.

  • Solution: Regular Lubrication:

Ensure proper lubrication of the bearings to minimize friction and prevent premature wear. Follow manufacturer recommendations for lubrication intervals and types.

  • 2. Uneven Movement:

If the linear motion becomes uneven, jerky, or experiences sudden stops, it may be due to damaged bearing components.

  • Solution: Inspection and Replacement:

Inspect the bearings and associated components for any signs of damage, such as dents or cracks. Replace any damaged parts to restore smooth motion.

  • 3. Abnormal Noise:

Unusual noises during linear motion, such as grinding or clicking sounds, can indicate friction and wear within the bearings.

  • Solution: Lubrication and Inspection:

Lubricate the bearings as recommended and inspect for any foreign particles or debris that might be causing the noise. Clean and replace components if necessary.

  • 4. Increased Play or Clearance:

If there is noticeable play or excessive clearance in the linear system, it can affect precision and lead to inaccuracies.

  • Solution: Adjustment or Replacement:

Check for loose bolts, misalignment, or worn components causing the play. Make necessary adjustments or replace worn parts to restore proper fit and function.

  • 5. Reduced Performance:

If your linear system is no longer achieving the desired accuracy or performance, it could be due to worn bearings.

  • Solution: Maintenance and Replacement:

Regularly perform maintenance tasks, such as cleaning, lubrication, and inspection. If performance does not improve, consider replacing the bearings with new ones.

  • 6. Visible Damage:

Any visible signs of physical damage, such as deformation, corrosion, or cracks, require immediate attention.

  • Solution: Replacement:

If the damage is severe, replace the damaged bearings promptly to avoid further issues.

Regular maintenance practices, including proper lubrication, cleaning, and inspection, are crucial for preventing wear and damage in linear bearings. Addressing any signs of wear early can extend the lifespan of the bearings and ensure consistent performance in various applications.

linear bearing

Recent Advancements in Linear Bearing Technology

Recent years have seen significant advancements in linear bearing technology, leading to improved performance, reliability, and versatility. Some notable developments include:

  • Nanotechnology: The integration of nanotechnology has allowed for the development of ultra-precision linear bearings with nanometer-scale accuracy. These bearings are ideal for applications requiring extremely fine movement and positioning.
  • Smart Bearings: Advances in sensor technology have enabled the creation of smart linear bearings that can monitor parameters like temperature, load, and vibration in real time. This data helps in predictive maintenance and optimizing operational efficiency.
  • Materials Innovation: New materials with enhanced properties, such as self-lubricating and corrosion-resistant coatings, have extended the lifespan of linear bearings and reduced the need for frequent lubrication and maintenance.
  • Compact Designs: Manufacturers are designing more compact linear bearings to suit space-constrained applications while maintaining high load capacity and precision.
  • Environmental Sustainability: There’s a growing emphasis on developing linear bearings with reduced environmental impact, including using eco-friendly materials and designs that require less energy to operate.
  • Integration of IoT: Linear bearings are being integrated into the Internet of Things (IoT) networks, allowing them to communicate with other equipment and systems for seamless automation and optimization.
  • Magnetic Levitation Bearings: Magnetic levitation (maglev) technology is being applied to linear bearings to create frictionless movement, reducing wear and enabling smoother and more precise motion.
  • Advanced Coatings: Coatings with enhanced wear resistance, low friction, and improved thermal properties are being applied to linear bearings, extending their service life in challenging environments.

These advancements have contributed to the expanding range of applications where linear bearings can be used, from aerospace and automotive industries to medical devices and consumer electronics. As technology continues to evolve, linear bearings will play a crucial role in enabling more efficient and precise motion control across various sectors.

linear bearing

Advantages of Linear Bearings over Other Bearing Types

Linear bearings offer several distinct advantages when compared to other types of bearings, particularly in applications that require controlled linear motion. These benefits contribute to their widespread use across various industries:

  • Precise Linear Motion:

Linear bearings are designed specifically for linear motion, providing accurate and controlled movement along a defined path. This precision is essential in applications that demand accurate positioning and repeatability.

  • Low Friction:

Linear bearings are designed to minimize friction during motion. The reduced friction translates to smoother movement, reduced wear, and improved efficiency, making them suitable for applications requiring consistent motion.

  • High Load Capacity:

Linear bearings can handle significant loads in both radial and axial directions. This capability allows them to support heavy components and maintain stability under various loads.

  • Minimal Maintenance:

Due to their design and minimal contact between moving parts, linear bearings require less maintenance compared to other types of bearings. This is particularly advantageous in hard-to-reach or inaccessible areas.

  • Guided Motion:

Linear bearings provide guided and constrained motion along a single axis. This guidance eliminates the need for complex guiding mechanisms, reducing design complexity and simplifying assembly.

  • Compact Design:

Linear bearings have a compact form factor, making them suitable for applications with limited space. Their small footprint allows for efficient use of available area.

  • Low Noise and Vibration:

Linear bearings generate minimal noise and vibration during operation, contributing to quieter and more comfortable working environments in applications such as medical devices and precision machinery.

  • Smooth Movement:

Linear bearings offer smooth and consistent movement, essential for applications requiring continuous and controlled motion, such as robotic systems and conveyor belts.

  • Customization:

Linear bearings can be designed to fit specific application requirements, including load capacity, travel distance, and environmental conditions. This customization enhances their suitability for diverse applications.

  • Reduced Wear:

The low friction and guided motion of linear bearings result in reduced wear on both the bearing and the mating surface, leading to longer service life and reduced maintenance costs.

Overall, the benefits of using linear bearings make them a preferred choice in applications that demand accurate linear motion, efficient load handling, and reduced maintenance. Their ability to deliver precision, stability, and reliability contributes to improved performance across various industries.

China high quality Manufacturers Direct Sales of High Quality Lm Series Bearinglm20uu Lm25uu Lm30uu CNC Linear Bearing Are Suitable for Electronic Equipment/Food Machinery Bearing   bearing bronzeChina high quality Manufacturers Direct Sales of High Quality Lm Series Bearinglm20uu Lm25uu Lm30uu CNC Linear Bearing Are Suitable for Electronic Equipment/Food Machinery Bearing   bearing bronze
editor by CX 2024-05-10

China Best Sales Lbb24 / Lbb24uu / Lbb24uu-Aj / Lbb24uu-Op Linear Ball Bushing Bearing bearing distributors

Product Description

LBB24 / LBB24UU / LBB24UU-AJ / LBB24UU-OP Linear Ball Bushing Bearing
 

LBB24UU Linear Bearing Specifications 

Stock Qty. 950.pcs (More on the Way)

 

LBB24UU Linear Bearing Descriptions

1): Weight: 0.47KG
2): HS CODE: 8482109000
3): Type: Linear Bushing,Inch Size
4): Country of Origin: JAPAN

 

LBB24UU Linear Bushing Shipping & Payment Ways

1): Lead Time: 2  ~ 3 Working Days.
2): Payment  : By Wire Transfer / Western Union / Paypal.
3): Shipping  : By Express (DHL/UPS/FEDEX,etc., / By Air / By Sea.

Besides,we also have Linear Bearings given as below In Stock for Sell:

LBB4 LBB4UU LBB4-AJ
LBB6 LBB6UU LBB6-AJ
LBB8 LBB8UU LBB8-AJ
LBB10 LBB10UU LBB10-AJ
LBB12 LBB12UU LBB12-AJ
LBB16 LBB16UU LBB16-AJ
LBB20 LBB20UU LBB20-AJ
LBB24 LBB24UU LBB24-AJ
LBB32 LBB32UU LBB32-AJ

  HangZhou Droke Transmission Machinery Co.,Ltd which is bearing Business factory model in China.  
Below is some of our best sellers for your reference. 
Deep groove ball bearings 
Cylindrical roller bearings 
Full complement cylindrical roller bearings
Spherical roller bearings 
Needle roller bearings 
Thrust ball bearings 
Tapered roller bearings 
Angular contact ball bearings 
Self-aligning ball bearings 
Except bearing series we also  have Casting series as follow: 
High performance material casting Casting for commercial vehicle 
Casting for construction machinery 
Castings for agricultural equipment Special vehicle 
Casting Casting of robot Wind turbine casting 
Any interested, more information& SAMPLE will be provided for you reference
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: High Speed
Function: Super
Flange Shape: Customized
Shape: Straight
Series: Lbb
Material: Bearing Steel
Customization:
Available

|

Customized Request

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Enhancing 3D Printers and Additive Manufacturing with Linear Bearings

Linear bearings play a crucial role in the efficient and precise operation of 3D printers and additive manufacturing processes. Here’s how they contribute to these technologies:

  • Precise Motion Control:

Linear bearings provide smooth and accurate linear motion control, ensuring precise positioning of the print head or build platform. This precision is essential for creating intricate and detailed 3D printed objects.

  • High Repeatability:

Linear bearings offer high repeatability, enabling the printer to consistently recreate complex geometries layer by layer. This is crucial for producing parts with consistent quality and dimensions.

  • Reduced Vibration and Wobble:

The smooth motion provided by linear bearings minimizes vibrations and wobbling during printing, leading to smoother surface finishes and improved print quality.

  • High-Speed Printing:

Linear bearings can handle high speeds, allowing 3D printers to operate at faster print speeds without sacrificing accuracy. This is beneficial for reducing overall print time.

  • Compact Design:

Many linear bearings have a compact and space-efficient design, which is important for fitting within the confined spaces of 3D printers while maintaining the required range of motion.

  • Low Friction and Wear:

Linear bearings are designed to minimize friction and wear, leading to longer lifespan and reduced maintenance requirements. This is especially important in additive manufacturing where continuous operation is desired.

  • Smooth Layer-by-Layer Building:

In additive manufacturing, linear bearings enable precise movement of the build platform or print head, ensuring that each layer is accurately aligned and built upon the previous layer.

  • Complex Geometries:

Linear bearings enable 3D printers to create complex and intricate geometries that require precise control over the movement of the print head and build platform.

Overall, linear bearings contribute to the success of 3D printing and additive manufacturing by providing the necessary motion control, precision, and reliability needed to create high-quality and intricate 3D printed objects.

linear bearing

Examples of Crucial Motion Control Scenarios Using Linear Bearings

Linear bearings are crucial for achieving precise motion control in various scenarios where accuracy, repeatability, and smooth movement are essential. Here are some examples:

  • 1. CNC Machining:

In computer numerical control (CNC) machines, linear bearings enable precise movement of the cutting tool or workpiece along multiple axes. This accuracy is necessary to produce complex and intricate parts with tight tolerances.

  • 2. Semiconductor Manufacturing:

In semiconductor fabrication equipment, linear bearings control the movement of wafers, masks, and other components with micron-level precision. This precision is vital for creating tiny circuits and microchips.

  • 3. 3D Printing:

In 3D printers, linear bearings ensure accurate positioning of the print head and build platform. This accuracy is crucial for creating intricate and detailed 3D-printed objects.

  • 4. Laser Cutting and Engraving:

Linear bearings are used in laser cutting and engraving machines to control the movement of the laser head. Precise motion ensures accurate cutting and engraving on various materials.

  • 5. Microscopy:

In microscopy applications, linear bearings enable precise positioning of microscope stages and objectives. This accuracy is essential for capturing detailed images and conducting precise measurements.

  • 6. Metrology and Inspection:

Linear bearings are crucial in metrology and inspection equipment for accurately measuring and inspecting parts. This ensures compliance with quality standards and specifications.

  • 7. Optical Systems:

In optical systems, linear bearings control the movement of lenses, mirrors, and other optical components. Precise motion is essential for maintaining accurate focus and alignment.

  • 8. Coordinate Measuring Machines (CMMs):

Linear bearings in CMMs allow accurate measurement of parts’ dimensions and geometries. Precise motion ensures reliable measurement results.

  • 9. Aerospace and Defense Testing:

In aerospace and defense industries, linear bearings are used in testing equipment to simulate various conditions. Accurate motion control is crucial for testing components’ performance and durability.

These examples highlight the critical role of linear bearings in achieving precise motion control across industries. Whether in manufacturing, research, or testing, linear bearings ensure accurate and repeatable movement for optimal results.

China Best Sales Lbb24 / Lbb24uu / Lbb24uu-Aj / Lbb24uu-Op Linear Ball Bushing Bearing   bearing distributorsChina Best Sales Lbb24 / Lbb24uu / Lbb24uu-Aj / Lbb24uu-Op Linear Ball Bushing Bearing   bearing distributors
editor by CX 2024-05-09

China Best Sales Measuring Equipment Automatically Refuels Linear Guide Motion Bearing wholesaler

Product Description

Company Introduction:

UP GOLD Automation Technology Co., LTD., independent brand, NYZ and UP. The main products are linear CZPT rail, slider, ball screw, linear optical shaft, linear bearing, machine tool spindle special P4 high precision bearings and accessories, with advanced production equipment and testing instruments to ensure the accuracy of each product. Precision products will provide higher value to the equipment. The company promises to sell each product, warranty period of 24 months, 24 hours after-sales service. Provide professional OEM cooperation model. At the same time, the company agents international first-line brands HIWIN, TBI, NSK,THK. Sufficient resources to ensure every customer needs.
 

 

 

Product Display:

 

 

 

 

 Products Description:

 

Product Name Linear Bearing UCP210
Feature 1. High quality
2. .High rigidity
3. High power
4. Interchangeability
5. Reversibility
Precision High Precision
Material Chrome Steel GCr15
Delivery Time 1) 1-5 Workdays for Samples or in Stock
2) 10-30 Working Days for Ordering

 

Mode of transportation:

 

Air freight:
Less than 45 KGS,we will send by express.
(Door to Door,Convenient)
Land transportation:
Between 45- 150 KGS, we will send by air transport.
(Fastest and safest, but expensive)
Railway:
More than 150 KGS,we will send by sea.
Shipping:
According to the requirement of customer.

 

Product packaging:

 

Bearing packaging mode:
01 Industrial packaging
Plastic tube + Carton + Pallet
02 Commercial packaging
Plastic bag + Kraft paper+ Carton+ Pallet
03 Original packing+ pallet

 

 
 

Our Advantage
*Two-year warranty, replace instead of repair.
*12 Months Warranty
*Fast Delivery
*24 hours on line service
*Professional Team

  

FAQ:

Q: What is the producing process?

A: Production process including raw material cutting, machine processing,grinding, accessories cleaning, assemble, cleaning, oil coating,cover pressing, testing, package.

Q: How to control the products quality?

A: Combining advanced equipment and strict management, we provide high standard and quality bearings for our customers all over the world.

Q: What is the transportation?

A: If small quantity, we suggest to send by express, such as DHL, UPS,TNT FEDEX. If large amount, by air or sea shipping.

Q: How about the shipping charge?

A: We will be free of domestic shipping charge from your freight forwarder in China.

Q: Can you provide OEM service?

A: Yes, we provide OEM service. Which means size, quantity, design,packing solution, etc will depend on your requests; and your logo will be customized on our products.

Q: Could you tell me the delivery time of your goods?

A: Generally it is 3-5 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to the quantity.

Q: What about the packaging of your products?

A: Normally we use standard commercial package, we also have our own brand packing or customized package as per customers’ requests.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Vacuum, Magnetically, Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Ordinary
Flange Shape: Square
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear bearing

Prolonging the Life of Linear Bearings Through Maintenance Practices

Implementing proper maintenance practices is essential to extend the lifespan of linear bearings and ensure their optimal performance. Here are specific maintenance practices that can help:

  • 1. Regular Lubrication:

Ensure that linear bearings are properly lubricated as recommended by the manufacturer. Adequate lubrication minimizes friction, reduces wear, and prevents premature failure.

  • 2. Cleaning:

Regularly clean the linear bearing components to remove dirt, debris, and contaminants. Keeping the bearings clean reduces the risk of abrasive particles causing damage.

  • 3. Inspection:

Periodically inspect linear bearings for signs of wear, damage, or misalignment. Look for uneven wear patterns, visible damage, or any unusual behavior during motion.

  • 4. Alignment:

Ensure proper alignment of the linear components to prevent excessive stress on the bearings. Misalignment can lead to premature wear and reduced lifespan.

  • 5. Proper Handling:

Handle linear bearings with care during installation and maintenance. Avoid dropping or impacting the bearings, which can cause internal damage.

  • 6. Load Distribution:

Distribute loads evenly across multiple linear bearings if applicable. This prevents overloading individual bearings and extends their life.

  • 7. Environmental Considerations:

Protect linear bearings from harsh environments, extreme temperatures, and corrosive substances. Use appropriate seals and enclosures to prevent contamination.

  • 8. Regular Maintenance Schedule:

Create a maintenance schedule based on usage and manufacturer recommendations. Consistent maintenance helps identify issues early and prevents unexpected failures.

  • 9. Proper Storage:

Store spare linear bearings in a clean and dry environment. Avoid exposure to moisture and dust, which can damage the bearings over time.

  • 10. Consult Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance, lubrication, and replacement intervals specific to the linear bearings you are using.

By implementing these maintenance practices, you can significantly prolong the life of linear bearings, reduce downtime, and ensure optimal performance in various applications.

linear bearing

Role of Linear Bearings in Heavy Load and High Precision Applications

Linear bearings are essential components in applications that require the combined capabilities of handling heavy loads and maintaining high precision. They serve a critical role in such scenarios:

  • Heavy Load Handling:

Linear bearings are designed to support and guide heavy loads along a linear path. They distribute the weight evenly, reducing friction and wear on the moving components and ensuring smooth and stable movement.

  • Precision Motion Control:

Linear bearings enable precise and accurate control over the motion of heavy loads. This precision is crucial in applications where components need to be positioned or moved with extremely fine tolerances.

  • Reduced Friction:

Linear bearings are engineered to minimize friction between moving parts, even under heavy load conditions. This not only improves efficiency but also enhances the accuracy of movement.

  • Smooth Movement:

Linear bearings provide smooth and consistent movement, ensuring that heavy loads can be guided and positioned without jarring or sudden stops. This is particularly important for applications requiring controlled and gentle motion.

  • Reduced Wear and Maintenance:

By reducing friction and wear, linear bearings extend the operational lifespan of heavy-load equipment. This translates to lower maintenance requirements and longer intervals between servicing.

  • Optimized Performance:

Linear bearings contribute to the overall performance of heavy-load systems by allowing them to operate smoothly, accurately, and reliably. This is critical in applications where precision and consistency are paramount.

  • Wide Range of Industries:

Linear bearings find application in various industries, including manufacturing, aerospace, automotive, and heavy machinery, where heavy loads need to be moved with high precision.

Overall, linear bearings serve as a cornerstone in applications that demand the simultaneous management of heavy loads and precise movement. They ensure that heavy machinery and equipment can function efficiently and accurately while maintaining the safety and integrity of the entire system.

linear bearing

Design Principles and Functionalities of Linear Bearings

Linear bearings are designed with specific principles to facilitate controlled linear motion along a single axis. These design principles contribute to their functionalities, making them essential components in various applications:

  • Rolling Elements:

Linear bearings typically feature rolling elements, such as balls or rollers, that move along a track or rail. These rolling elements reduce friction and enable smooth linear motion.

  • Guiding Mechanism:

Linear bearings incorporate a guiding mechanism to constrain the motion to a single axis. This guiding mechanism ensures that the linear bearing moves precisely along the desired path.

  • Load Distribution:

The design of linear bearings allows for effective distribution of loads, both in the radial and axial directions. This load distribution ensures stability and prevents excessive stress on individual components.

  • Rail or Track:

Linear bearings typically run along a rail or track that provides a smooth and accurate path for the rolling elements. The rail is designed to resist wear and maintain its precision over time.

  • Cage or Carriage:

Linear bearings use a cage or carriage to house the rolling elements and maintain their proper spacing. This arrangement ensures even load distribution and smooth movement.

  • Sealing and Lubrication:

Linear bearings often incorporate sealing mechanisms to protect the rolling elements from contaminants and to retain lubrication. Proper lubrication ensures smooth motion and extends the bearing’s lifespan.

  • Mounting Options:

Linear bearings are designed to be mounted in various ways, depending on the application’s requirements. Mounting options include flange-mounted, base-mounted, or end-supported configurations.

  • Adjustability:

Many linear bearings are designed with provisions for adjustment, allowing users to fine-tune the preload or clearance to optimize performance and minimize play.

  • Materials:

Linear bearings are constructed from materials that offer high wear resistance, durability, and corrosion resistance. Common materials include steel, stainless steel, and various engineering plastics.

  • Accessories:

Accessories such as end caps, seals, and lubrication systems can enhance the functionality and lifespan of linear bearings by providing protection and ensuring proper maintenance.

Functionalities of linear bearings include providing precise linear motion, guiding components along a defined path, minimizing friction, distributing loads, and maintaining stability. The design principles ensure reliable operation and make linear bearings indispensable in applications requiring controlled and accurate linear motion.

China Best Sales Measuring Equipment Automatically Refuels Linear Guide Motion Bearing   wholesalerChina Best Sales Measuring Equipment Automatically Refuels Linear Guide Motion Bearing   wholesaler
editor by CX 2024-05-06

China Best Sales Sh CZPT Series Slide Support Linear Ball Bearings connecting rod bearing

Product Description

Linear Motion Ball Bearing Slide Units
We also can supply all type of Linear Motion Ball Bearing Slide Units.It’s used for rectilinear motion product. Precise machining aluminium slide units. follows standardization desingn, cost low,designs high efficiency and so on.

Linear Motion Ball Bearing Slide Units
We also can supply all type of Linear Motion Ball Bearing Slide Units.It’s used for rectilinear motion product. Precise machining aluminium slide units. follows standardization desingn, cost low,designs high efficiency and so on.

Linear Motion Ball Bearing Slide Units
We also can supply all type of Linear Motion Ball Bearing Slide Units.It’s used for rectilinear motion product. Precise machining aluminium slide units. follows standardization desingn, cost low,designs high efficiency and so on.

Linear Motion Ball Bearing Slide Units
We also can supply all type of Linear Motion Ball Bearing Slide Units.It’s used for rectilinear motion product. Precise machining aluminium slide units. follows standardization desingn, cost low,designs high efficiency and so on.

Linear Motion Ball Bearing Slide Units
We also can supply all type of Linear Motion Ball Bearing Slide Units.It’s used for rectilinear motion product. Precise machining aluminium slide units. follows standardization desingn, cost low,designs high efficiency and so on.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Corrosion Resistant, High Temperature, High Speed
Function: Ordinary
Flange Shape: Oval
Shape: Straight
Series: LM
Material: Stainless Steel
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

ball bearing

What are the Materials Typically Used in Manufacturing Ball Bearings and Their Advantages?

Ball bearings are manufactured using a variety of materials, each chosen for its specific properties and advantages in various applications. Here are some commonly used materials in ball bearing manufacturing and their respective benefits:

  • High-Carbon Chrome Steel (AISI 52100):

This is the most common material used for ball bearing manufacturing. It offers excellent hardness, wear resistance, and fatigue strength. High-carbon chrome steel bearings are suitable for a wide range of applications, from industrial machinery to automotive components.

  • Stainless Steel (AISI 440C, AISI 304, AISI 316):

Stainless steel bearings are corrosion-resistant and suitable for applications where moisture, chemicals, or exposure to harsh environments are concerns. AISI 440C offers high hardness and corrosion resistance, while AISI 304 and AISI 316 provide good corrosion resistance and are often used in food and medical industries.

  • Ceramic:

Ceramic bearings use silicon nitride (Si3N4) or zirconia (ZrO2) balls. Ceramic materials offer high stiffness, low density, and excellent resistance to corrosion and heat. Ceramic bearings are commonly used in high-speed and high-temperature applications, such as in aerospace and racing industries.

  • Plastic (Polyamide, PEEK):

Plastic bearings are lightweight and offer good corrosion resistance. Polyamide bearings are commonly used due to their low friction and wear properties. Polyether ether ketone (PEEK) bearings provide high-temperature resistance and are suitable for demanding environments.

  • Bronze:

Bronze bearings are often used in applications where self-lubrication is required. Bronze has good thermal conductivity and wear resistance. Bearings made from bronze are commonly used in machinery requiring frequent starts and stops.

  • Hybrid Bearings:

Hybrid bearings combine steel rings with ceramic balls. These bearings offer a balance between the advantages of both materials, such as improved stiffness and reduced weight. Hybrid bearings are used in applications where high speeds and low friction are essential.

  • Specialty Alloys:

For specific applications, specialty alloys may be used to meet unique requirements. For example, bearings used in extreme temperatures or corrosive environments may be made from materials like titanium or hastelloy.

  • Coated Bearings:

Bearings may also be coated with thin layers of materials like diamond-like carbon (DLC) or other coatings to enhance performance, reduce friction, and improve wear resistance.

The choice of material depends on factors such as application requirements, operating conditions, load, speed, and environmental factors. Selecting the right material is essential for ensuring optimal bearing performance, longevity, and reliability in diverse industries and applications.

ball bearing

What Role do Seals and Shields Play in Protecting Ball Bearings from Dirt and Debris?

Seals and shields are critical components of ball bearings that play a crucial role in protecting them from dirt, debris, moisture, and contaminants in various applications. These protective features help maintain the integrity of the bearing’s internal components and ensure reliable operation. Here’s how seals and shields contribute to bearing protection:

  • Contaminant Exclusion:

Seals and shields create a physical barrier between the external environment and the bearing’s interior. They prevent dust, dirt, water, and other contaminants from entering the bearing and coming into contact with the rolling elements and raceways.

  • Lubrication Retention:

Seals and shields help retain lubrication within the bearing. They prevent the lubricant from escaping and contaminants from entering, ensuring that the bearing remains properly lubricated for smooth operation and reduced friction.

  • Corrosion Prevention:

Seals and shields protect bearing components from exposure to moisture and corrosive substances. By preventing moisture ingress, they help extend the bearing’s lifespan by minimizing the risk of corrosion-related damage.

  • Extended Bearing Life:

Seals and shields contribute to the overall longevity of the bearing by reducing wear and damage caused by contaminants. They help maintain a clean internal environment, which promotes proper rolling contact and minimizes the risk of premature failure.

  • Enhanced Performance in Harsh Environments:

In applications exposed to harsh conditions, such as outdoor machinery or industrial settings, seals and shields are vital. They protect bearings from abrasive particles, chemicals, and extreme temperatures, ensuring reliable performance despite challenging conditions.

  • Noise and Vibration Reduction:

Seals and shields can help reduce noise and vibration generated by the bearing. They provide additional damping and stability, contributing to smoother operation and enhanced user comfort in noise-sensitive applications.

  • Customized Protection:

Manufacturers offer a variety of seal and shield designs to suit different application requirements. Some seals provide higher levels of protection against contamination, while others are designed for high-speed or high-temperature environments.

  • Trade-Offs:

While seals and shields offer significant benefits, they can also introduce some friction due to contact with the bearing’s inner or outer ring. Engineers must balance the level of protection with the desired operating characteristics, considering factors like friction, speed, and environmental conditions.

Overall, seals and shields play a vital role in maintaining the integrity and performance of ball bearings. By effectively preventing contaminants from entering and preserving lubrication, they ensure the smooth and reliable operation of machinery and equipment in a wide range of applications.

ball bearing

How do Ball Bearings Differ from Other Types of Bearings like Roller Bearings?

Ball bearings and roller bearings are two common types of rolling-element bearings, each with distinct designs and characteristics. Here’s a comparison of ball bearings and roller bearings:

  • Design:

Ball Bearings: Ball bearings use spherical balls to separate and reduce friction between the bearing’s inner and outer rings. The balls enable rolling motion and smooth contact, minimizing friction.

Roller Bearings: Roller bearings, as the name suggests, use cylindrical or tapered rollers instead of balls. These rollers have larger contact areas, distributing loads over a broader surface.

  • Friction and Efficiency:

Ball Bearings: Due to the point contact between the balls and the rings, ball bearings have lower friction and are more efficient at high speeds.

Roller Bearings: Roller bearings have a larger contact area, resulting in slightly higher friction compared to ball bearings. They are more suitable for heavy-load applications where efficiency is prioritized over high speeds.

  • Load Capacity:

Ball Bearings: Ball bearings excel at handling light to moderate loads in both radial and axial directions. They are commonly used in applications where smooth rotation and low friction are important.

Roller Bearings: Roller bearings have a higher load-carrying capacity than ball bearings. They can support heavier radial and axial loads and are preferred for applications with significant loads or impact forces.

  • Variability:

Ball Bearings: Ball bearings come in various designs, including deep groove, angular contact, and thrust ball bearings, each suitable for different applications.

Roller Bearings: Roller bearings have diverse types, including cylindrical, spherical, tapered, and needle roller bearings, each optimized for specific load and motion requirements.

  • Speed Capability:

Ball Bearings: The reduced friction in ball bearings makes them suitable for high-speed applications, such as electric motors and precision machinery.

Roller Bearings: Roller bearings can handle higher loads but are generally better suited for moderate to low speeds due to slightly higher friction.

  • Applications:

Ball Bearings: Ball bearings are used in applications where smooth motion, low friction, and moderate loads are essential, such as electric fans, bicycles, and some automotive components.

Roller Bearings: Roller bearings find applications in heavy machinery, construction equipment, automotive transmissions, and conveyor systems, where heavier loads and durability are crucial.

In summary, ball bearings and roller bearings differ in their design, friction characteristics, load capacities, speed capabilities, and applications. The choice between them depends on the specific requirements of the machinery and the type of loads and forces involved.

China Best Sales Sh CZPT Series Slide Support Linear Ball Bearings   connecting rod bearingChina Best Sales Sh CZPT Series Slide Support Linear Ball Bearings   connecting rod bearing
editor by CX 2024-05-02